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PREFACE 

This book dea1.s with e n g i n e e r i n g   c y b e r n e t i c s ,  a rapidly  develop- 

The book is intended for  engineers  concerned with the  automation of in- 
ing new science with a wide scope of application. 

dustry,  transport, and agriculture.  It  can  also  be  used as a textbook  by 
senior  undergraduates  specializing  in  automation,  electronics,  power  en- 
gineering,  heat  engineering,  etc. 

The  author  wishes to express  his  gratitude  to  the  Candidates of Techni- 
cal Sciences A. N. Sklyarevich, M. P. Vaivars, A. K. Baums, and all other 
co-workers who went to  great  trouble  over  this  manuscript and offered 
valuable  advice. 

V 



INTRODUCTION 

1. BASIC DEFINITIONS 

The  development of mathematics,  and  especially  information  theory,  the 
theory of probability,  and  mathematical  logic,  have  opened new perspectives 
in  the  control of various  processes  in  living  organisms  and  inanimate  objects. 

recent  years  have  provided  the  technical  means  for  solving  the  problems 
of control on an  entirely new level,  hitherto  inaccessible. In short,  this 
is the  background  for  the  development of a  new  science which Norbert  Wiener 
called  in 1947 c y b e r n e t i c s .  

The  term  "cybernetics"<: is not  new in  science.  Plato  used  the word to 
describe  the  art  of steersmanship  and,  later,  the  French  physicist  Ampere 
used  it  for  the  art of government. 

N. Wiener  imparted  a new meaning  to  this  term,  defining  cybernetics 
as " t h e   f i e l d   o f   c o n t r o l   a n d   c o m m u n i c a t i o n   t h e o r y   w h e t h -  
e r  i n   m a c h i n e  o r  a n i m a l " .  

Cybernetics  is  a new branch of science  embracing  the  achievements of 
various  older  provinces:  physiology of higher  nervous  activity,  theory of 
automatic  control,  mathematics, etc. It  has  opened new vistas  for  the so- 
lution of very  important  problems. 

The  various  concepts  constituting  the  basis of cybernetics were largely 
developed  by  C.  Shannon,  I. P. Pavlov. A. N. Kholmogorov, W. Ashby,  and 
other  scientists  from  all  over  the  world. 

In the  Soviet  Union,  among  the  prominent  cyberneticists, we have A. I. 
Berg, S.A. Lebedev, A . A .  Dorodnitsyn, A.A. Fel'dbaum, V.  V.  Solodov- 
nikov, A .  G .  Ivakhnenko,  and V. M. Glushkov. 

The  efforts of A. I. Berg  and  his  followers  have  made  cybernetics  a 
principal  branch of science  in  the  Soviet  Union,  opening  wide  horizons fo r  
the  development of the  national  economy. 

E n g i n e e r i n g   c y b e r n e t i c s  i s  a d i v i s i o n  of c y b e r n e t i c s  
s t u d y i n g   t h e   d e s i g n  of m a c h i n e s   c a p a b l e   o f   p e r f o r m i n g  
c o m p o s i t e   l o g i c a l   f u n c t i o n s   o f   a u t o m a t i c   c o n t r o l .   T h e s e  
machines ,   or   more  precisely  systems,   are  now called c y b  e r n  e t i c. 

The  pre-cybernetic  period was  mainly  characterized by the  automation 
of m  a n u a l  labor.  Engineering  cybernetics now enables us to  proceed 
directly with  the  automation of the  m e n t a1  activit ies of man.  This  auto- 
mation  can  be  applied  only  to  a  problem  for  which  the  laws of operation 
can  be  ridigly  stated, or, in  other  words,  for which  a  solution  in  the  form 
of an  a  1  go r i t  h  m is available.  The  range of problems  for which algo- 
ri thms  are  available is growing  daily. 

A characterist ic  feature of cybernetics is the  drawing of a n  a  1 o g i e s 
between  the  activities of living  organisms and  the  operation of a  machine. 

K U ~ ~ E P V ~ I L X ~  in Greek means  "steersmanship". 

In  addition,  the  achievements of electronics  and  computer  engineering  in 
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These  analogies,  in  spite of the  profound  difference  between  the  nature of 
the  living  organism  and  that of a machine,  lead  to  the  imitation of various 
human  functions  in  cybernetic  systems. 

The  main  factor  involved  in  the  design of cybernetic  systems is the 
receiving,  processing  and  transmitting of i n f o  r m a t  i on.  

By information is meant  the  multiplicity of data which man  receives 
through  his  senses  from  his  environment. For acybernet ic   system  info r - 
m a t  i o n comprises  messages  concerning  the  variation of characterist ics 
of the  controlled  member  (a  mill, a machine, a mechanism) and external 
conditions  affecting  this  member.  The  analysis of this  information,  and 
methods of its  measurement and processing,  led  to  the  development of the 
i n f o r m a t i o n   t h e o r y .  

a d a p t a t i o n  or s e l f   - a d j u ’ s t m e n t .   T h i s   f a c u l t y m a k e s   p o s s i b l e   t h e  
automatic  adjustment of an  object whose properties  vary with time. 

back.   Feedback  here ,   as  in  ordinary  automatic-control  systems,  ensures 
exceptional  flexibility in response  to  the  variation of external  conditions 
affecting  the  cybernetic  system. 

In the  great  majority of cybernetic  systems  the  behavior  is r a n d o m  
owing to  the  [random J variation of external  conditions.  Engineering  cyber- 
netics  therefore  freely  draws on s t a t i s t i c a l   t h e o r y   ( t h e o r y  of p r o  - 
b a b i l  i ty ) ,   to  allow for  the  effect of these  random  changes. 

and  require  nonlinear  -system  analysis. 

lyzedbythe  same  methods  applied to noncybernetic  systems. In cybernetic 
systems  these  methods  are  naturally  developed  to a higher  degree. 

A large  class of cybernetic  systems  can be designed  with  the  faculty of 

Cybernetic  systems,  like  living  organisms,  always  operate with f e e d  - 

Relationships  between  individual  parameters  are  as a rule  nonlinear, 

In spite of the  complexity of cybernetic  systems,  they  are  usually  ana- 

2. TRENDS IN ENGINEERING  CYBERNETICS 

Three  principal  trends of development are  observed  in  engineering 
cybernetics. 

a )  Engineering  cybernetics  in  the compound  automation of industry 

A strong  factor  aiding  in  the  application of cybernetic  systems  to  the 
compound  automation of industry is the  availability of high-speed  computers 
with large  memory  storages and  equipment  capable of performinglogical  func- 
tions. 

These  systems,  even  at  the  present  level of development, a r e  adequate 
for  setting up fully  automated  assembly  lines,  shops,  and  plants.  They  can 
produce a product  without  human  intervention and regulate  its  production 
so  as  to  obtain  the  highest  possible  quality  at  the  lowest  cost. 

tic  system.  This  dispatcher  regulates  the  output of electric  power  from 
various  power  stations  connected  into a single  grid.  It  allows  for  the  ef- 
ficiencies of steam  boilers,  turbogenerators,  the  cost of fuel  burnt at 

The  electronic  dispatcher of the  power  grid is an  example of a cyberne- 
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thermal  power  stations,  the  water  reserves at hydroelectric  stations, 
the  cost of transmission of electric  power  from  the  power  station  to  the 
consumer,   etc. ,  so that  the  cost of power is minimum. 

b)  Imitations of living  organisms 

The  study of the  activities of living  organisms  and  their  imitation  in  cy- 
bernetic  systems  have  led  to  the  development of synthetic  ttanimals'' which 

. at  present  are  rather  like  toys.  However,  even now the  processes of ma-  
chine  "le'arning" are  being  investigated  to  help  in  devising  complex  "learn- 
ing"  cybernetic  systems. 

In 1929 an  electronic  "dogt'  created by the  Frenchman  Henry  Pirot  was 
exhibited at the Pa r i s  Radio  Exhibition.  This  "dogtt  could  follow  a  flash- 
light.  It  "barked"  and  ''turned  aside''  when  the  flashlight  was  placed  too 
near  it. In  1939 another  electronic "dog" was  scheduled  to  be  exhibited  at 
the New York World's  Fair.  However,  on  the  eve of the  Fair  the  dog  was 
attracted by the  headlights of a   car  and run  over. 

in recent  years. 

behavioristic  features of animals. When the  battery  feeding  the  "turtle" 
was  well  charged,  it  acted  "satisfied"  and  escaped  from  light. When the 
battery  was low, the  ''turtle''  looked  for  the "feed  trough" - a  charging  de - 
vice  illuminated  from  above.  The  "turtle"  could  also  avoid  obstacles  placed 
in its path. 

The  last  electronic  "animal"  created by Walter went through a process 
similar  to  the  development of a  conditional  reflex  in  an  animal. 

Other  electronic  "animals"  include  Shannon's  "mouse", and  Ducroque's 
"foxes':  and research in this  direction  opens  ever new and  interesting  pos- 
siblities  in  imitating  the  functions of living  organisms by cybernetic  systems. 

Other,  more  complicated,  types of synthetic  Itanimalst'  have  been  created 

Walter's  "turtle"  performed  a  set of motions which imitated  some  basic 

c )  Synthetic  "organs"  for  human  beings 

In his  play "RUR", the  outstanding  Czech  writer  Karel  eapek  described 
mechanical  "people",  calling  them  "robots".  Since  then,  the  term  robot 
has  been  applied  to all mechanisms of anthropoidal  external  appearance 
which imitate  human  functions. 

In the 18th century  Albertus  Magnus  built  an  iron  robot which could  open 
a door  and bow to  all who entered. Many other  robots  have  since  been  built. 

versal  cybernetic  system, a "perfect  robot",  which wil l  perform  all  the 
functions of man, is often  contemplated. 

Such an  ideal  robot is ,scientifically  unsound,  since  the  functions of living 
organisms  can  never  be  completely  duplicated  in a machine. 

However,  cybernetic  systems  can  successfully  reproduce  individual  func- 
tions of various  human  organisms  and  the  efforts of scient is ts   are  now being 
concentrated  on  their  development. 

. The  design of robots  has so fascinated  the  West  that  the  creation of a  uni- 
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I . I . .. ...."". .._. 

A. Kobrinskii,  with a group of scientists,  has  created  an artificial a r m  
controlled by the  muscular  biocurrents of a man; artificial eyes, artificial 
hearts,   and  art if icial   kidneys  are all among  the  more  immediate  cybernetic 
biological  projects. 

These first steps  taken  already  indicate  the  future  promise of this  field. 

3. FEEDBACK 

Automatic-control  systems  are  often  called f e e d b a c k   s y s t e m s ,   b e -  
cause  in  any  automatic-control  system':  the  direct  coupling  (Figure 0.  l )  
between  the i n p u t  (the control  signal) and t h e   o u t p u t  (the controlled  var- 
iable)  is  supplemented by feedback  between  output  and  input.  Feedback 
allows  for  change  in  the  controlled  variable  (parameter) and introduces  cor- 
responding  corrections  into  the  control  signal  at  the input. 

Input 

Controlled 

Output - 

43- object 

Feedback 

FIGURE 0.1. Feedback i n  an  automatic- 
control  system. 

The  importance  attached  to  feedback  becomes  obvious when we remem- 
ber  that it occurs not  only  in  automatic-control  systems but also  in  living 
organisms,  for both operate (or function)  under  variable  conditions  and  must 
react  appropriately  to  these  changes. 

Let us consider,  for  example,  the  function of the  motor  muscles  in  the 
leg of a  man  trying  to  keep  his  balance. 

To maintain  balance,  the  tension of various  skeletal  muscles  must  be 
regulated.  This  regulation is effected by the  spiral  cord  (Figure 0 . 2 )  which 
issues  appropriate  "commands"  to  the  muscles.  The  information  concern- 
ing  the  balance of the body (i. e . ,  its deviation  from  the  normal  position) is 
transmitted  to  the  cerebellum. T h e  cerebellum  processes  this  information 
and  gives  the  necessary  ' 'instructions''  to  the  spinal  cord.  Following  these 
"instructions"  the  spinal  cord  modifies  the  commands  issued  to  the  muscles. 
The  spiral  cord,  the  muscles, and the  cerebellum  thus  constitute a closed- 
loop  system which controls  the  man's  balance. In this  system  the  cerebel- 
lum is the  element which closes  the  feedback loop  between  output and  input. 

An exception to this rule is provided by programmed systems:  these  systems,  however, are not  cybernetic, 
and they  operate  according to a pre-ordained f i x e d  program. 

4 



1401 

Feedback 

FIGURE 0.2. Block diagram of the  system  regulating  the 
balance of a  standing  man. 

Feedback 

FIGURE 0 .3 .  The human eyes as a  feedback  element. 

Consider  another  example of feedback.  Suppose  that  a  man  wishes  to 
press  a  push button. The  brain  (Figure 0.3) issues  the  necessary  signals 
to  the  arm  muscles and  the arm  moves  toward  the  button.  The  eyes  follow 
the  motion of the  arm and report  to  the  brain, which corrects  the  function- 
ing of the arm  muscles.   The hand  thus  touches  the  push  button  accurately. 
If. the  eyes  are  closed  (the  feedback  loop is "brokentt)  the hand  will  not reach 
the  button.  It is, of course,  possible  to find  the  button by "feeling  the way". 
But this  too  involves  feedback by the tactile organs. 

The  function of the  feedback  loop  in  automatic-control  systems is similar.  
Consider  for  an  example  the  control of an  electric  motor  (Figure 0.4). In 
this  system  the  logical  computing  eiement  measures  the  parameters of the 
motor  shaft  (rpm,  acceleration,  torque),  makes  the  necessary  computations, 
logical  comparisons, and ensures  control of the  magnetic  amplifier,  which, 
in  turn,  adjusts  the  motor  parameters. 

In both  living  organisms and automatic-control  systems,  the  elements 
have, a s  a rule,  a  certain d i r e  c t i o n a1 it y . The  eyes  transmit  informa- 
tion  to  the  brain  (Figure 0.3), and there is no reaction  from  the  brain  to  the 
eyes  (in  the  same  channels).  Similarly,  in  Figure 0.4 the  magnetic  ampli- 
fier controls  the electric motor,  but  the  motor  has no effect  on  the  amplifier 
parameters.  This  directionality  applies  to  any  feedback  loop, which has 
unidirectional  coupling  from  output tp input,  but  does  not  have  input-output 
feedback. 

5 
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Input 

I Logic-computing 
unit 

Feedback 

FIGURE 0.4. Feedback i n  a  motor control system. 

4. PRINCIPAL  PROBLEMS OF THE THEORY OF CYBERNETIC 
AUTOMATIC-CONTROL  SYSTEMS 

The  problems  dealt with  by the  theory of cybernetic  automatic-control 
sys tems  a re  divided  into  two  distinct  categories: 

a )  Analysis of control  systems 

In this  case  the  control  system is given  and  it is required  to  determine 
the  behavior of the  system  (stability,  response  time,  etc. ) for any  input 
signal and  the  variation  in  the  parameters of the  controlled  member  and of 
other  elements of the  system. 

b )  Design of control  systems 

This  problem is more  complicated,  since it is required  to  design  a  sys- 
tem  meeting  certain  requirements  as  regards  static  and  dynamic  charac- 
terist ics.  



C h a p t e r  I 

SIGNALS 

1. TYPES OF SIGNALS 

Electrical  automatic-control  systems  use  electrical  signals  for  the  trans- 
mission of information.  Processing  this  information  consists of the  con- 
version of these  signals  [from one form  to  another]. 

and these  determine  the method of transmission. 
There   a re  two principal  types of signal, c o n  t i n u o u s and d i s c r e t e,  

a )  Continuous signals 

In a c o n  t i n  u o u s signal,  the  signal  amplitude  varies  continuously 
(Figure 1. 1 )  and the  information  transmitted is proportional  to  the 
amplitude. 

FIGURf 1.1. A continuous signal curve 

Until recently  the  continuous  signal  has  been  the  most  widespread  in 
automatic-control  systems.  Recently,  however,  in view of the  discrete 
transmission of information  in  living  organisms and  owing to several   ad-  
vantages of discrete  automatic  -control  system  (mostly  their  accuracy and 
noise  discrimination),  discrete  signals are being  used  increasingly. 
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b)  Discrete  signals 

A d i s  c r e t  e signal  differs  from  a  continuous  signal  in  that  it  varies 
in  steps,  and not  continuously. For  example,  the  signal  whose  variation is 
represented  in  Figure 1. 1 may  in  reality  be  following  a  stepwise  curve  (Fig- 
ure  1.2) .  The  information, as in  the  case of a  continuous  signal, is given 
by  the  ordinates of the  curve.  The  characteristic  feature of the  discrete 
signal  is  that  the  information  has  a  constant  amplitude ( 1 , )  during At seconds, 
and  only  changes  in  amplitude  at  discrete  time  intervals  (each At seconds). 

Broken  signals  can  also  be  obtained by converting  a  continuous  curve 
(the  dashed  line in Figure 1 . 2  ) into  a  stepwise  curve.  This  conversion  is 
known a s  the q u a n t i  z a t  i o n of a  continuous  curve, or analog-to-digital 
conversion.  In  Figure 1 . 2  the  signal is t i  m  e - q u a   n t  i  z  e  d,  i.  e.,  the  sig- 
nal  changes  discretely  at  definite t i  m  e  intervals ( A t ) .  

1 
1 

I 

FIGURE 1 . 2 .  A discrete current curve. 

The  higher  the  frequency of quantization  (the  smaller A t ) ,  the  closer  the 
quantized  curve  approximates  the  continuous  one.  The  advantage of discrete 
over  continuous  signals is that  they  are  much  more  easily  handled by elec- 
tronic  means.  The  most  important  method of discrete  representation of 
signals is p u l s e   - c o d e   m o d u l a t i o n .   H e r e  each  signal is made  to  cor- 
respond  to  a  code  represented by a  sequential  pulse  train,  reducing  the 
transmission of information  to  a  transmission of pulse  trains. 

i 

dash 
I dc IE I D t  

FIGURE 1.3. Transmission of information in Morse code. 
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The  simplest  example of pulse-code  modulation is the  Morse  code,  where 
each  letter of the  alphabet  and  each  number is transmitted  as  a  definite se- 
quence of long  (dashes)  and  short  (dots)  signals (Figure 1.3). 

2.  BINARY REPRESENTATION OF NUMBERS 

Until  recently  all  computations  made  in  various  branches of science  and 
technology  used d e  c i m  a 1 numbers, i. e. , combinations of ten  elementary 
digits  (symbols ): 

0,1,2,3,4,5,6,7,8,9. 

This  method of number  representation is not  unique. For  example,  Ro- 
man  numerals  make  use of five  symbols: 

I, V. X. C, MI. 

where I = l ,  V=5, X= 10, C- 100  and M- 1ooO. 
Other  number  systems  are  available,  the  simplest of these  beingthe  b i - 

n a r y  s y s t e m . This  system is based on two  symbols  only, o n  e  and z e r 0. 
The  decimal  number  system  requires  ten  different  signals  (ten  different 

signal  levels) to correspond  to  each  digit,  whereas  the  binary  system  re- 
quires  only two different  signal  levels.  These  signals  are  formed  simply by 
''one"  showing  the  presence of current flow  in the  circuit,  and  "zero"  the 
lack of current flow  in  the  circuit**.  The  rules of addition  and  multiplication 
in  the  binary  system  are  also  very  simple.  Because of these  features,  the 
binary  system  has  become  very  widespread  in  computer  technology and in 
cybernetic  automatic-control  systems. 

The  control  in  living  organisms is also  binary. 
A nerve  cell  (a  neuron) is either  excited or not. To  excite  a  neuron,  the 

stimulus  must  attain  a  certain  t n r e s h o 1 d  level.  This  phenomenon is 
known in  physiology a s  the  "all-or-none"  rule. 

The  shortcomings of the  binary  system  are  that  the  representation of 
any  number  requires  more  digits  than  in  the  decimal  system, and that  a 
number  represented by "1" s and "0" s is unfamiliar.  However,  these  short- 
comings  are  more  than  compensated by the  advantages. 

I Before  proceeding with the  discussion of the  binary  system,  let us ana- 
lyze  the  representation of numbers  in  the  decimal  system.  Consider  the 
n a t u r a l   n u m b e r s :  

0,1,2,3,4,5 ... 
Onlythe  f irst   ten  numbers  are  represented by corresponding  symbols.  The 
transition  from  the  number 9 to  the  number 10 therefore  requires  a  special 
procedure. T h e   l a s t   o f   t h e   s y m b o l s   a v a i l a b l e   ( n i n e )  i s  r e -  
p l a c e d   b y   t h e  f i r s t  s y m b o l  of t h e   s y s t e m   ( z e r o )   a n d   t h e  

*. Since  automatic-control  systems  generally  employ  vacuum and semiconductor  devices,  which are not ideal 
circuit breakers. the  signal  "zero'* in practice does not correspond to absence of current in the  circuit. but 
rather tothe  presence of a  small current which is readily  distinguishable from the current taken to represent '*one". 

Two additional  symbols are sometimes introduced: L = 50 and D = 500. 
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n e x t   s y m b o l   ( o n e )  i s  w r i t t e n   t o  i t s  l e f t .  Thenumber 10 is 
thus  represented with the  aid of two  digits. 

then  replaced by two  (12),  etc. 

number  system  used. We shall now apply it to  the  'binary  system, We have 
already  said  that  this  system  makes  use of two  symbols  only. For the  sake 
of convenience  the  first two  digits of the  decimal  system, 0 and  1,  were 
chosen. 

The  ''zero''  and  the  ''one''  in  the  binary  system  are  represented by the 
same  digits  as  in  the  decimal  system, but  a special  symbol  for  represent- 
ing  the  number  lltwoll  is  lacking,  and  it  shall be represented by using  the 
previously  described  procedure. 

The  last of the  symbols  available ("1" in th i s  case)  is   replaced by the 
first  symbol of the  system  (zero) and  one is  written  to  its  left.  The  number 

Replacing  the  zero by the  next  symbol "1" gives  us  number  "three1' ("1 1"). 
The  procedure for  deriving  number  ''four" is the  same  as  used  to  derive 

The  next  number  is  derived by substituting  one  for  zero (11). the  one is 

This  method of sequential  representation of numbers is independent of the 

in  the  binary  system  is  thus  represented  as "10". 

number "two",  but now the  two  symbols  (the two ones)  are  replaced by zeros 
and  a  one is written  to  the  left ("100"). 

following  table: 
Consecutive  numbers  are  written  similarly. In conclusion we obtain  the 

From  this  table  it  can  be  seen  that  only  one  binary  number, "l", (other 
than  zero)  can  be  represented by a single  digit.  This  can  be  expressed by 
the  equality 2O=1. Two  digits  will  represent  three (2O+2'=3) binary  num- 
bers :  "01, 10, 11". three  digits,  seven (2°+21+22=7) binary  numbers: 
"001, 010,  011, 100, 100, 101,  110, ill", etc.,  and  Rbinary  digits  [called 
b i t s ] will represent the  following  a-nount of binary  numbers: 

11-1 
N=2O+2'+2*+. . . +2R" = Z P .  (1.1) 

b=O 

The  ser ies  22' is a geometrical  progression with q - 2  and ol=20=1. 
Using  the  equations of geometrical  progressions,  the  sum of R t e rms  of this 
s e r i e s :  

Hence R bits  will  represent 

N-2'- 1 numbers. 

1 0  

(1.2) 

." - .- ". . .." _."..... ... .. . .... ._ .. . I . .  I .. ... ,. ..I ...... 
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From  this  equation  the  number of bits  required  to  represent a number 
N can  be  calculated: 

R=log2 (N+ 1). ( 1 . 3 )  

where log2  N is the  logarithm,  to  the base of 2, of the  number N. 

thirty-one  (N=31). 
E x a  m  p 1 e .  Find how many bits are required  to  represent  number 

Applying  equation (1. 3), 

R=logp (N+l)=logp32=5. 

Hence 5 bits are required  to  represent  the  number 31. 
Equation (1. 3 )  does  not  always  give  an  integral  number of digits.  In  this 

case the  result  should  be  rounded  to  the  next  greatest  number.  The  result- 
ing  (rounded)  number of digits ( R )  is suitable  for  representing  more  than 
N numbers. 

E x a m p l e .  Let  N=20.  Then,  from  equation (1.3), 

R=5. 

However, from ( 1 . 2 )  it  can  be  seen  that  five  bits will represent 

Five  bits are required  to  represent  the  first  twenty  numbers, but they 

Tables of logarithms  to  the  base of two are generally  unavailable  in  com- 
can be used  to  represent  the  first  thirty-one  numbers. 

mon  reference  books.  However,  using  well-known  conversion  formulas, 
the  necessary  calculations with any  other  available  tables  may  be  carried 
out. 

The  equation N=2' can  be  written  in  the  following  form: 

X = logs N, 
x In 2- lnN.  
x l g 2 - l g N ,  

where In N = the  natural  logarithm of the  number N; 
1g N = the  decimal  logarithm of the  number N. 

Eliminating  the unknown x from  these  equations  gives 
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Inserting  the  values of In2 and 1g2 in  this  expression  gives  the  conversion 
formulas 

log2 N =  1.44 In N, 
log:, N = 3  33 Ig N. (1.4) 

A s  regards  the  representation of fractional  numbers,  binary  systems 
can be  divided  into  two  classes: 

a )  f i x e d   - p o i n t   s y s t e m .  
In this case, a binary  number,  say 

1011.101, 

has  the  binary  point  at a fixed  position,  and  in  general  this  point is not 
coded.  The  integer  part of the  number is represented with pre-assigned 
digits,  other  digits  being  assigned  to  the  fractional  part. 

b )   f l o a t i n g - p o i n t   s y s t e m .  
In this  system  the  number N is represented  in two parts,   the  mantissa 

For example, 
and the  exponent. 

101.01 =0.10101 * 10". 

where 10  = the  number "2"  in the  binary  system; 
31 = the  number "3" in  that  system. 

In floating-point  system  the  mantissa  (10101) and the  exponent  (11) are 

The  signs of the  mantissa and of the  exponent are coded as follows: 
coded  separately. 

3. CONVERSION O F  BINARY  NUMBERS INTO 
DECIMAL NUMBERS 

[To  convert a binary  number  into a decimal  number, we must know the 
decimal  equivalent of each  unit  in  the  binary  number. ] 

If a binary  number  has  one  (zero-order)  digit,   the  corresponding  one 
is equal  to  the  one of the  decimal  system  (Table 1. 1 ). This  follows  from 
the  equality 1 - 20= 1 . If the  zero-order  digit is a "zero1', we have 0 - 2O=O.  
Hence,  binary  zero is converted to decimal  zero.  This  rule  can be extend- 
ed  to  any  m-th-order  digit of the  binary  number: 

I .  2" =2", 

0 . 2 "  =o. (1. 5) 

For  example, a one  in  the  second-order  digit (m=2)  is equal  to  (Table 1. 1 )  
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This  gives us a rule  for.  converting a binary  number  into its decimal 
equivalent.  The  conversion is carr ied out  by  inserting  zeros  and  ones  as 
coefficients  in  the  terms of the series (1.1) in  accordance with the  digits 
of the  given  binary  number. 

E x a m  p 1 e . Find  the  decimal  equivalent of the  binary  number 1001 10. 
We write  six  terms  in series (1. l), since  the  given  binary  number  has 

six  digits  (the  zero-order  digit,  the  first-order  digit, . . . , the  fifth-order 
digit): 

~ + 2 4 + ~ + ~ + 2 ' + 2 0 .  

Zeros  are  then  written in a s  coefficient  preceding  the  zero-,  third-, and 
fourth-order  digits of the  number 100110, and  ones,  before  the  remaining 
digits,  giving 

N = I  .25+0.24+0.25+1.22+1.2~+0.20=38. 

4. CONVERSION OF DECIMAL  NUMBERS 
INTO  BINARY NUMBERS 

Any decimal  number N can be written,  as in (1. l),  in  the  following  form: 

where R = the  number of digits  required  for  the  binary  representation of 
the  number  (see  equation (1. 3)); 

u~-U,+, = coefficients  equal  to 0 o r  1. 
In  the  first  method of conversion,  the  given  decimal  number  is  expanded 

into a s e r i e s  of the  form 2 2" and the  exponents m of this  expansion  are 
established.  The  equivalent  binary  number is obtained by writing ones at  the PO - 
sitions  correspondingto  these  exponents,  and  zeros in the  remainingpositions. 

E x a m p l e .  Find  the  binary  equivalent of the  number 43. 
Expanding  the  number 4 3  into a s e r i e s  in powers of 2 gives 

43-32+8+2+ 1=25+23+2'+20. 

The  first,  second,  fourth, and  sixth  digits (or, in other  words,  the  zero- 
order ,   f i rs t -order ,   th i rd-order ,  and fifth-order  digits) of the  binary num - 
ber   are   ones,  and  the third and  the  fifth (or the  second-  and  the  fourth- 
order)  digits  are  zeros.   Thus 

43 -+101011. 

Another,  simpler  method of decimal-to-binary  conversion is a s  follows: 
both sides of equation (1.6) a r e  divided by 2. Seeing  that 20-1, w e  obtain 
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This  division of Nby 2 produces a quotient (2R"+4*2R4+. . .+ 
+CLR--~~~++J and  a residue ( a R A  If N iseven,  the  residue uRl=0; if N 
is odd, aR-l= 1. 

" 

Dividing N again  by 2 (and  omitting  the term  gives  the  residue 

uR4 [which is equal  to  zero if  -is even,  and  equal  to  one i f  Eis odd,  and 
2 N 

2 2 

2 

so on]. 
The  rule  for  decimal-to-binary  conversion is a s  follows: 
The  given  decimal  number N is divided  by 2.  If N is an  even  number, 

the  zerb-order  digit of the  binary  number is a zero.  If N i s  an odd number, 
a residue of one is obtained,  and  the  zero-order  digit is a one.  The  quo- 

tient !! i s  then  divided by two (omitting  the  previous  residue). If the  di- 

vision  gives no residue,  the  first-order  digit of the  binary  number is a 
zero; if,  however, a residue of one is obtained,  the  first-order  digit is a 
one.  This  process  is  continued  until  the  final  quotient is zero.  

In practice  this  method is applied a s  follows:  the  given  decimal  number 
is  successively  divided by 2, and the  residue of each  division  (zero  or  one) 
is written down in a column.  This  column  represents  the  equivalent  binary 
number. 

The  quotient is 34 with a residue of 1. The  residue  is  written down in  the 
right-hand  column,  and 34 is again  divided by 2, etc.   This  process  is  con- 
tinued  until  the  quotient is  zero.  This  conversion is represented  in  the  fol- 
lowing  table: 

2 

E x a m p l e .  Find  the  binary  equivalent of the  number 69.  Divide 69 by 2. 

69 

Quotient 

34 
17 
8 
4 
2 
1 
0 

Residue 

Hence, 

69+1000101. 

5. QUANTIZATION OF CONTINUOUS  SIGNALS 

Industrial  installations  often  deal with  continuous processes.  The  sig- 
nals  arising  from any variation  in  the  parameters of these  processes  are 
therefore  also  continuous.  [They  are  called  analogs of the  measured  para- 
meters.  ] 

signals (i. e . ,  when the  signals are q u a n t i  z e d ), some of the  information 
It would appear  that, when continuous  signals are converted  into  discrete 
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contained  in  continuous  signal would be  partially  lost. V .  A.  Kotel'nikov  has 
proved  that  this is not so, and  that  continuous  signals  can  be  quantized  with- 
out  any lo s s  of information. 

The  proof of K o t e l ' n i k o v ' s   t h e o r e m  is based on the  following. 
First,  any  signal  transmitted in a  real  channel  has  alimited  frequency  spectrum, 
because when passing  through  a real apparatus,  say  through  an  electric  -mo- 
tor  winding,  the  signal is smoothed  out  and  the  higher  harmonics  are  atten- 
uated so as  to  become  negligible.  Second,  the  signal is invariably  subject 
to  distortion  from  noise,  and  the  transmission of this  signal with an e r r o r  
smaller  than  the  noise  magnitude  therefore  corresponds  in  effect  to  trans- 
mission with  no e r r o r  at all .  A continuous  function  with  a  frequency  spectrum 
whose  upper limit is fml. can  therefore  be  exactly  represented by a  finite 
number of its values  measured  at  time  intervals not exceeding  (Figure 1 . 2 )  

1. 8 

Thus  ,it  is possible  to  convert  a  continuous  signal  into  a  discrete  signal 
without loss of information. 

6 .  ANALOG-TO-DIGITAL CONVERSION 

Various  transducers  developing  voltage  analogs of various  parameters 
may  be  used.  These  transducers  measure  displacement,  temperature,  pres- 
sure ,  and  a  multiplicity of other  parameters which vary  continuously with 
time. 

To  apply  this  information  in  digital  automatic-control  equipment,  the 
analog  signal  must  be  quantized. 

Different  types of electronic  or  electromechanical  equipment  are  avail- 
able  for  this  conversion.  Electronic  converters  are  capable of up to  a  mil- 
lioqbinary  conversions  per  second.  They  may  have  no rn o v i  n g c o n  t  a  c  t s 
and a r e  much more  reliable  in  service  than  mechanical  devices. I t  should  be 
kept  in  mind,  however,  that  some  electromechanical  converters  are  sim- 
pler and cheaper  than  the  electronic  ones.  The  choice of the  converter 
therefore  depends on the  actual  problem  encountered. 

Two main  techniques  are  currently  used  for  analog-to-digital  conversion. 
These  are  the  time-base  encoding  method and  the  weighted-voltage  compar- 
ison  method,  whose  essentials we shall now briefly  consider. 

a)   Time-base encoding  method 

In time-base  encoding  a s a w t o o t h - v o l t a g e   g e n e r a t o r   i s u s e d ,  
This  generator sets up periodic  voltage  (Figure 1.4), which increases  pro- 
portionally  with  time  during  the t r a c e  interval and drops  to  zero  during 
the f 1 y  b  a  c k interval. 

sawtooth  voltage. 
The  continuous  voltage u=f ( t )  to be  quantized is superimposed  on  the 

A t  points B , ,  Bs, BI , etc.,  these  voltages  are  equal.  The  voltage  at 
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point BI is therefore  given  by 

FIGURE 1.4. Comparison of two voltages. 

Since  the  slope (a) of the  sawtooth  voltage is constant,  the  voltage  at  point 
B I ,  taken  to  an  appropriate  scale, is equal  to  the  time  interval t l .  The  con- 
tinuous  voltage  can  be  quantized  in  the  following  manner. 

A clock-pulse  generator  (Figure  1.5)  sends  pulses  simultaneously  to  a 
counter  and  scaler.  The  scaler  produces an output  signal  after  receiving 
n pulses, i. e. ,   at   t ime  intervals 

I T=-n, 
fP 

where f P  is the  clock-pulse  generator  frequency.  The  output signal from 
the  scaler  synchronizes  the  pulse  generator with the  counter  at  points A 
(Figure 1.4) 

of the  voltage  to  be  quantized (u).  When these  voltages  are  equal  (points B 
in  Figure 1.4), the  comparator  sends  an  inhibit  pulse  to  the  gate,  inhibi- 
ting  any  further  pulses  from  the  pulse  generator  to  the  counter.  The  num- 
b e r  of pulses  transmitted  to  the  counter  while  the  gate is open is propor- 
tional  to  the  voltage  measured  at  point B .  After  counting  these  pulses,  the 
counter  generates  a  discrete  output  voltage u .  The  counter  used  determines 
the  coding  system of this  output  voltage. If a binary  counter is used,  the 
output  voltage is binary-coded.  Having  generated  an  output  signal,  the  coun- 
ter  clears  itself  to  zero,  makingit  ready  for  counting  the  voltage (u) in  the 
next  interval. 

The  advantage of the  time-  base  encoder is the  simplicity of the  circuit 
and  equipment  required.  Its  shortcoming is the  relatively low accuracy  due 
to the  inaccuracy  in  the  count of the  unequal  time  intervals  and  uncertainty 
of count. 

The low accuracy  arises  from  any  nonlinearity  in the sweep  voltage. 

The  input  to  the  voltage  comparator  consists of the  sawtooth  voltage  and 

16 



Moreover, the origin of the  pulse  count  (points A )  is determined  with  in- 
sufficient  accuracy and requires  a  special  circuit  for its determination. 

Clock-pulse Output 
generator Counter L 

I 

Scaler Voltage- 
comparator 

Synchroniz- Inhibit 

voltage 

FIGURE 1.5. Time-base encoding system 

Uncertainty of count arises  because  the  high-speed  counter  may  register 
extra  pulses  during  the  application of the  inhibit  signal. 

b) Weighted-voltage  comparison  method 

This method is based on the  comparison of instantaneous  values of the 
continuous  voltage ( u )  to  be  converted,  with  several  standard  voltages.  The 
standard  voltages  are of the  form uSt =2*, where k is a  positive  integer. 
The  standard  voltages  used  are : 

The  comparison of the analog  voltage  with  the  standard  voltages  follows 

The  highest  standard  voltage (USfk) is  taken and  a  comparison is made. 

1. If u >/ u , an  output of one is produced  for  the  k-th-order  digit, and 

the  logical  rules  below. 

st k 
the  sum of  two standard  voltages 

is next  used  for  comparison. 

2.  If u<uStk, a  zero  signal is produced  in  the  higer  k-th-order  digit and 

the  next  smaller  standard  voltage IL is taken  for  comparison. ( srk-l) 
3 .  Depending  on  the  results  in  articles 1 and 2 above,  a similar 
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comparison is made  following  one of the  conditions  below: 

i f  either  inequality is satisfied,  the  (k-1)-th-order  digit  receives  a  unit 
signal,  otherwise  a  zero  signal is produced. 

4. Similar  comparisons  are  made with sums of all the  lower-order  digits. 
E x a m p  1 e . Convert  the  voltage U = % v  into  binary  form. 
The  standard  voltages  available  in  the  converter  are 1, 2, 4, 8, 16, 32, 

The  sequence of operatj.on of a  binary  weighing  encoder is shown  in 
and 64 v .  

Table  1.2. 

TABLE 1.2 

Logical  operation of binary-weighing  encoder 
- 

No. I Position 

6 
7 

Comparison 

58 >64 
58 > 32 
58 > 32+ 16 
58 > 32+ 16 t 8 
58>32+ 16+ 8 + 4  
58 > 32+ 16+ 8+ 2 
58 >32+ 16+ 8 +  2 +  1 

Result of output  

Yes 

Yes 
No 0 

We thus  have  the  conversion 

58 v -+ 0111010. 

Since  the  pulses  produced by the  encoder  are  in  succession,  this  system 

By using  a  beam-switch  tube  in  this  encoder,  a  conversion  frequency of 
is called s e r i a l .  

up to 100 kc can be achieved.  The  conversionaccuracy  achieved  bythis  meth- 
od is higher  than  that  inherent  in  the  time-base  encoding  method,  since  it 
is limited  only by the  accuracy of the  standard  voltages and the  comparison 
circuit. 

A disadvantage of this  method is the  need  for  an  involved  logical circuit. 

7. DIGITAL- TO- ANALOG  CONVERSION 

It  should  be  kept  in  mind  that  the  discrete  signal  represents  the  value of 
the  variable  parameter  only  at  those  instants when the  measurements  were 
made.  Consequently,  thevalueof  the  continuous signal can be determined 
only  at  these  definite  points.  This is similar  to  plotting  a  curve  from  several 
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points,  where no information is available  on  the  behavior of the curve be- 
tween  each  two  points. 

The  conversion of a discrete  signal  to  a  continuous  signal  usually  con- 
sists of converting  a  binary  (and  sometimes  a  decimal)  code  into  a  contin- 
uous voltage,  whose  magnitude is an  analog of the  number  specified by the 
code. 

valent is the   we  i g h   i n  g m e t h o d ,  so called,  because it involves  weigh- 
ing al l  the  ones of the  binary  number. 

Take  for  example  the  number 11 1. F rom left to  right  the  digits "weigh" 
4 v, 2 v  and 1 v. Adding them  together  gives 7 volts. 

A circuit  using  this  method  for  the  conversion of a  four-digitbinarynum- 
ber  is shown  in  Figure 1 . 6  

The  most  common  method of converting  this  code  into its analog  equi- 

2'=8v ZQV 2'=2v 2 9 v  

Digit  positions 
Output 

FIGURE 1 . 6 .  A circuit for a binary weighing  decoder. 

If R standard  voltage  sources  are  provided  in this circuit, it can  be  used 
to  convert  any  R-digit  number. 

The  operation of this  circuit is based on the  switching of the  appropriate 
contact  by  the  appropriate  pulse. When  no pulse is received (i. e.,  the  digit 
is zero),  the  corresponding  contact  remains  to  the  left. If a  one is received 
the  contact of the  corresponding  digital  position  is  switched  over  to  the  right, 
and the  standard  voltage  representing  the  weight of the  digit  in  question is 
delivered  to  the  output. 

FIGURE 1 . 7 .  Converter  output voltage. 
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s 
FIGURE 1.8. Smoothed  converter  output signal. 

For  example, if  the  number 1011 is received,  the  contacts  are  switched 
over  to  the  right  in  positions 3, 1, and 0 ,  and  voltages of 8, 2, and  1 v, re- 
spectively,  are  delivered  to  the  output. 

When a conversion of a  decimal  number is required,  the  standard  volt- 
ages  should  be 1, 10, 100  v, etc.  

Electronic  switches  in  the  circuit of Figure 1.6 can  convert  binary-cod- 
ed information  at  a  rate of up to  1  million  pulses  per  second. 

The  voltage  output  from  the  converter is plotted  in  Figure  1.7. If suit- 
able   f i l ters   are  .provided at  the  output,  a  smoother  voltage  curve is obtained 
(Figure  1.8).  The  output  voltage is exact  only  at  those  points  where  conver- 
sion  was  made.  Thus,  the  higher  the  frequency of conversion,  the  greater 
the  accuracy of the  voltage  curve  obtained. A s  previously  indicated 
(Kotel'nikov's  theorem),  the  appropriate  selection of conversion  frequency 
will  ensure  a  continuous  output  voltage  without loss of information, i. e . ,  
with  an  accuracy  exceeding  the  errors of measurements. 

. .  
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Chapter 11 

ELECTRONIC  LOGICAL  ELEMENTS 

1. FUNDAMENTAL CONCEPTS OF  THE ALGEBRA OF LOGIC 

L o  g i c is the  science of the  forms and  laws of reasoning.  It is divided 
into  two  parts,  d i a1 e c t i c and f o r m  a 1. Formal  logic  describes  the  forms 
of reasoning  as  constant  and  immutable.  Dialectic  logic is concerned  with 
the  evolution of the  forms  and  laws of reasoning,  and it is this  factor of e  v o 1  u - 
t i  o n which distinguishes it from  formal  logic.  Evolution,  in  turn, is de- 
termined by the  interactions  inherent  between  each and every phenomenon. 
Dialectic  logic is at   present in its early  stages of development.  Formal lo- 
gic, however, is a  science which has  been  studied  in  considerable  detail. 

A branch of formal  logic which is readily  adaptable  to  the  requirements 
of mathematics is m a t  h e m   a t  i c a 1 1 o g i c . One  branch of mathematical 
logic is the a l g e b r a  of l o g i c  or B o o l e a n   a l g e b r a .  The  latter 
name  derives  from G. Boole,  one of the  founders of the  algebra of logic. 
Boole  was  the first to  develop  the  calculus of propositions  which  operates 
with  1 o g i c a 1 s t a t  e m e n  t s much  in  the  same way as conventional  math- 
ematics  operates with algebraic  symbols. 

Let A stand  for  a s t a t  e m e  n t , which  in  mathematics is generally  called 
a p r o p o s i t i o n .   A n y p r o p o s i t i o n i s e i t h e r   t r u e   ( c o r r e c t ) ,   o r   f a l s e  (in- 
correct).  The  truth of a proposition  shall  be  denoted  by  the  word "YES", 
and its falseness by the  word "NO". If the  proposition is transmitted  using 
binary  representation, its truth  will  be  represented by the  signal "1". and 
its falsness by  the  signal "0". For  example,  let A represent  the  proposition 
"The coil is energized". If the  proposition is true, A = 1, and if false, A=O. 

Boolean  algebra  enables  us  to  solve two  kinds of problems: 
a )   p r o b l e m s  of a n a l y s i s ,  where it is requiredto  descr ibe  the 

logical  operations of a  given  electronic or electromechanical  circuit; 
b )   p r o b l e m s   o f   d e s i g n ,   w h e r e  it is required  to  design  an  elec- 

tronic or electromechanical  circuit  to  perform  given  logical  requirements. 
Any compound  proposition  consists of simple  propositions.  Conversely, 

simple  propositions  can  be  used  to  construct  a compound  proposition.  There- 
fore,  using  simple  electronic  or  electromechanical  elements,  complicated 
logical  propositions  may  be  designed. 

a )  Negation of a proposition 

This  operation is denoted  symbolically by c=x and reads  "Proposition 
c is t rue when  proposition A is not t rue (false)".  Since  a  proposition is 
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qualified by the  symbols "1" o r  "O", the  negation of a proposition is r ep re -  
sented  by  the  following  equalities: 

6- 1, 

i=o, ( 2 . 1 )  

i. e.,  the  negation of zero is one,  and  the  negation  of  one is zero. 

FlGURE 2. 1. Symbol  representing a NOT gate 

In electronic  circuits,  the  logic  element  performing  negation is denoted 
(Figure  2.1)  by  a  rectangle  with  the word  "NOT" inscribed,  [and is called  a 
NOT gate]. An arrow  pointing  toward  the  rectangle  indicates  the i n p u t  of 
the  gate,  and  another  arrow  pointing  out,  indicates  the o u t p u t  . An output 
signal (1) is produced  only  when no input  signal ( 0 )  is received. When an  in- 
put  signal is received by the  gate, it produces  no output  signal. 

b)  Conjunction of two  propositions 

The  conjunction of two  propositions is denoted  symbolically  by C-AAB 
or C-A B and reads  "Proposit ion c is t rue if  propositions A and B a r e  
true''.  Thel'dot'l  in  the  second  symbolical  expression is used  because  con- 
junction  defines  a  table for  the l o g i c a l   m u l t i p l i c a t i o n  of two  num- 
bers  (for a binary  system): 

0 o=o, 
0*1=0* 
1 - o=o, 
1 1=1. (2 .2)  

The  logic  element  'used  to  perform  conjunction is denoted  by  a  rectangle 
(Figure 2 . 2 )  with the  word "AND" inscribed [and is called  an AND gate]. 
Since  this  element  compares  two  propositions A and B , it  has two  inputs. An 
output  signal (c= 1) is produced when propositions A and B are   t rue,  i. e.,  
when A- 1 AND B= 1 . In other  words,  an  output  signal is produced  when 
signals  are  received  at  both  inputs. If the  element  performs  the  conjunction 
ofnpropositions, it has n inputs. 

FIGURE 2. 2. Symbol  representing  an AND gate 
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c )  Disjunction of two  propositions 

The  disjunction of propositions is denoted  either  by C - A V B  o r  C = A + B ,  
and  reads  "Proposition c is t rue if proposition A OR proposition B is true". 

Disjunction  defines  the 1 o g i c a 1 a d  d i t  i o n  of two binary  numbers: 

0+0-4 
0+1=1, 
1 +o= 1. 
1+1=1. (2.3) 

A logic  element  performing  the  disjunction of two  propositions is denoted 
by  a  rectangle with the  word "OR" inscribed  (Figure 2.  3)  [and is called  an 
OR gate]. 

A 
OR 

B 1 "C 

FIGURE 2. 3. Symbol  representing an OR gate. 

An output  signal is produced when a  signal is received  at  either input A OR 
B . In the  disjunction of n propositions,  the  element  has n inputs. 

More  complicated  propositions  can  be  expressed  in  terms of negation, 
conjunction,  and  disjunction. For  example,  the  proposi-tion C - A B ,  where 
B - D + E  , is written. 

C-A ( D + E )  

Thus, using  electrical  circuits,  a  complicated  logical  function  can be per- 
formed,  using  the  simple NOT, AND, and OR gates. 

FIGURE 2. 4. Symbolic diagram of the logical  operation A(D+E).  

The  logical  function in the  previous  example is performed  using  two  gates 
(Figure 2. 4).  The OR gate  performs  the  disjunction  of'propositions ( D + E ) ,  
and  the AND gate  performs  the  conjunction A ( D + E ) .  

independent.  They are   re la ted by the  following  equations: 
Note that  the  operations of negation,  conjunction,  and  disjunction a r e  not 

A bar  over  the two letters  indicates  the  negation of the  logical  product  or 
logical  sum. 
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The  proof of equation (2 .4 )  is fairly  simple.  Symbols A and B , unlike 
their  use  in  conventional  algebra, do  not assume  any  arbitrary  value, but 
are either 1 o r  0. Therefore,  considering (2.4) for  the  four  possible 
cases  

and  applying  the  rules of logical  multiplication  (equation ( 2 . 2 ) )  and  logical 
addition  (equation ( 2 . 3 ) ) ,  we easily  arrive  at  their  validity. 

form  a  complicated  logical  function  can  be  reduced  to  a  single  type.  Consid- 
e r   a n  AND-NOT element  [called  a NAND gate]  (this  element is often  denoted 
by  the  letter L ), which performs  the  following  logical  proposition  (Sheffer's 
stroke  function): 

The  types of electronic or electromechanical  elements  required  to  per- 

Given NAND gates,  circuits  may  be  designed  to  perform  negation,  dis- 
junction,  and  conjunction  (Figure 2.  5). The  proof of this is evident when  we 
consider  all  the  possible (2. 5) values of propositions 

A _ _ I N A N D J - - t  1 A " c  

a 

b 

E A J I NANb t~y=+ 8 
C 

FIGURE 2. 5. (a) NOT  circuit.  (b) OR circuit.  (c) AND  circuit 
designed  using NAND gates. 

A s  an  example of the  proof,  consider  the OR circuit  (Figure 2.5, b). Tak- 
ing x1 and Xt a s  the  outputs of the first two NAND gates, we obtain 

X l - A T ;  XI-B.1; C-X,Xa. 
- 

The  results of these  operations  for  all  the  possible  values of A and B a r e  
arranged  in  Table 2 . 1 .  
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TABLE 2 .1  
Logical  operations performed by the  cir- 

cuit in Figure 2. 5.b. 

Comparing  the  results  obtained with the rules of logical  addition  (equation 
( 2 . 3 ) ) ,  we observe  that  the  circuit  in  Figure 2 .  5, b  performs  the OR function. 

Another  element  has  recently  been  introduced which can  be  used  to  pro- 
duce  all  the  othef  logical  operations.  This  element,  symbolically  denoted by 
a  rectangle with an  inscription  OR-NOT  (Figure 2 . 6 )  [ called  a NOR gate] 
performs  the  following  logical  operation: 

Using  the  procedure  discussed  for  the  circuits  in  Figure 2 . 5 ,  it can  be 
shown  that  the NOR gate  can  produce  the NOT, OR, and AND functions 
(Figure 2 .  7 ). 

FlGURE 2. 6. Symbol  representing a NOR gate. 

N A N D  and NOR gates  are  generally not used as  substitutes for the  other 
three types of logic  elements. In some  cases,  however,  it is possible to r e -  
alize  complex  functions  more  simply by the  use of these  special  gates  rather 
than with NOT, OR and AND elements. 

Boolean  algebra  obeys  the  same  rules of addition  and  multiplication a s  
conventional  mathematics. Among the  basic  rules we have: 

A+B-B+A;  AB-  BA; 
(A+B)  +C=A+  (B+C);  (AB)C-A(BC); 

A(B+C)-AB+AC. 

Since  the  symbols (A, B , etc.  ) in  Boolean  algebra  may  be  equal  to 0 and 
1 Only. it should  be  kept  in  mind  that, when manipulating  with  these  formu- 
las,  equalities  not  characteristic of elementary  algebra  may  be  obtained.  For 
example : 

A+A=A;  AA-A; 
A+Z=l;   AT-0, 
1+A=l;  A+AB=A. 
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Equalities (2 .6)  can  be  proven by using  the  same  technique 
equalities ( 2 . 4 ) .  

- 
a 

b 

;?-J-LFk 
NOR 

C 

a s  used  to  prove 

FIGURE 2. 7. NOR gates  producing  the  NOT, OR,  and AND 
functions. 

It  must  be  remembered  that  the  comparison  between  logical and conven- 
tional  algebraic  addition  and  multiplication is not perfect. For example,  in 
conventional  algebra A+A=2A, whereas  in  Boolean  algehra  (see (2 .  6)) 
A+A=A. Moreover,  some  operations of Boolean  algebra  (e.  g. , negation) 
have  no  direct  comparison  in  conventional  algebra. 

sions  may be simplified. 
Using  the  rules of Boolean  algebra,  various  complicated  logical  expres- 

E x a  m  p 1 e.  Design  a  circuit  to  perform  the  following  function: 

C=AB(AB+B); 

The  function  specified  can  be  performed  using  three  gates  (Figure 2 . 8 ,  a). 
I t  can,  however,  be  substantially  simplified.  Indeed, 

C=AB(AB+B) =AABB+ABB. 

But from ( 2 . 6 )  

AA=A;  BB-B. 

Hence 

C=AB+AB. 

Moreover,  from (2.6), D+D=D.  Hence,  setting D-AB,  we obtain 

C-AB. 
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The  function  specified  can  thus  be  performed  using  one  gate  only  (Fig- 
u re  2.8, b). 

a 

b 

FIGURE 2. 8. Two  circuits  which perform the same  logical 
function. 

2 .  BINARY ARITHMETIC 

Systems  may  be  devised  using  electronic  logic  elements, which wil l  add, 
subtract,  multiply, and divide,  according  to  the  rules of logical  multiplica- 
tion  and  addition. 

a )  Binary  addition 

Binary  numbers  are  added  according  to  the  rules of logical  addition 
(2 .3 ) .  In this  addition  a  cary of one is added  to  the  next  highest  position 
when  two ones  are  added. We therefore  have  the  following  rules  for  the' 
addition of one-bit  numbers: 

o+o-0. 
0+1-1. 
1+0-1, 
1+1"10 (2. 7) 

These  operations  can  be  performed by the  circuit  shown  in  Figure 2 . 9 .  

in (2.7). only when the  two  addends A and E )  are  ones.   This  can  be  writ-  
ten  in  the  form 

The  carry  signal (c) is produced, as can  be  seen  from  the  fourth  equality 

C-A and B 

o r  

C-AB. 
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A 

8 
FIGURE 2. 9. Adder circuit for two binary numbers. 

The carry  signal is therefore  the  output of the AND, gate  whose  inputs are 
the  signals A and B (Figure 2 . 9 ) .  

The sum signal is obtained  (see (2. 7)) in two cases ,  when 

(A==[, B-0)  or  (A-0, B = l ) .  

Using  Boolean  terminology, we may  write  these  conditions  in  the  form: 

[ Aand  (not S)]  or [(no A ) and B J 

In symbolic  notation,  the  equivalent i s :  

A B  o r  AB.  

Finally,  this  function  can  be  written: 

D-AB+AB, 

where D is the  sum  signal. 
This  addition  can  be  performed  (Figure 2.  9 )  using  five  gates,  namely 

NOT, , NOT,, AND,, AND, , and OR. Equation (2. 8). however,  does not 
contain  the  optimum  number of gates  for  deriving  the  sum D .  This  is   be- 
cause  the  previously  formed  signal C-AB has not  been  utilized.  This  point 
will now be  consi_ered. 

Seeing  that AA=O and BS'=O (2.6), we may  write (2 .8 )  a s  

D=AB+AB=AX+AB+XB+BB. 
A f t e r  simplifying, we obtain 

D -  ( A + B )  (J+B). 
It  follows  from  the  second  equation of ( 2 . 4 )  that 
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Hence 

but 

AB-C. 

Giving  finally 

This  expression is simpler  than  that of (2 .8) .  Thus,  the  addition is 
performed  (Figure 2. IO) using  four (and  not six,  as  in  the  previous  case) 
gates. 

Result 
" 

A D 

8 I C 
Carry 

FIGURE 2. 10. Simplified adder circuit 

The  circuits  in  Figures 2 . 9  and 2 .  10 are   used only  in  addition of one-bit 
numbers. To add  two R -bit  numbers, we must  have  an  adder  consisting of 
[ R ]  h a  1 f - a d  d e r s (HA). An adder  for  three  -bit  numbers  is shown  in Fig- 
ure  2. 11. Two three-bit  numbers (A2AlAO and &BIB,-,) constitute  the  input of 
this  device.  The output is a four-bit  number (D3D2D1Do). 

Input 

output 

FIGURE 2. 11. Adder for three-bit numbers 
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Fromthis  diagram  i t   can be  seen  that  each  half-adder (HA) should  be so de- 
signed  that  it  adds  three  one-bit  numbers,  namely A, B, and  the  carry  from 
the  lower  position ( C ) .  The  circuit of one of these  adders,  assembled  from 
NOT, OR and AND gates is shown  in  Figure 2.12. 

FIGURE 2. 12. Adder  for  three  one-bit  numbers 

b)  Binary  subtraction 

Binary  numbers  can  be  subtracted by  two  methods. Firs t ,  a unit  can  be 
designed  which,  subtracting  a  smaller  number  from  a  greater  number, will 
subtract  directly  the  bits of the  same  position  according  to  the  following 
rules:  

0-0-0. 
1 -o= 1, 
0 - l = l ( l ) ,  
1-1=0, (2.9) 

where (1) indicates  a  carry (add 1) to  the  next  highest  position of the  subtra- 
hend. 

numbers,  can  be  easily  designed. 

duced  when 

Using  these  rules,  a  logical  circuit  for  the  subtraction of two  one-bit 

Let  the  diminued  be A and  the  subtrahend B.  The  carry  signal (c) i s  pro- 

C= (not A 1 and B 

o r  
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This  logical  function is produced by the two gates, NOT, and AND, (Fig- 
ure  2. 13). A one is obtained  after  subtraction if  A = l  and B=O o r  if  A=O 
and B=I.  This  function, a s  we have  shown  in  the  discussion of binary  addi- 
tion, is   writ ten  as 

D-AB+XB. 

The  subtraction  in  Figure 2. 13 is p2rformed by  five  gates,  two of which 
are  used  for  producing  the  carry  signal (c). 

A- 

FIGURE 2. 13. Subtractor  circuit for two  one-bit  numbers. 

Comparing  the  adder  (Figure 2. 9 )  and subtractor  (Figure 2. 1 3 )  circuits 
for  one-bit  numbers we see  that  they  differ  only  in  the  logic of car ry   de te r -  
mination.  It i s  often  convenient  to  use  one  circuit  for both  addition and sub- 
traction. In this  case  the  subtraction  is  reduced  to  addition by a special  tech- 
nique, now to be  described. 

Consider  the  subtraction of two  R-bit  numbers: 

A- B. 

The  greater of these two numbers  is s c a 1 e d, i. e . ,  it is written  in  the 
form 

A=alO”, 

where a = the m a  n t i s s a of the  binary  number.  It  is  smaller  than  one, 
and has a one in the  most  significant  position  immediately  fol- 
lowing  the  binary  point; 

II = the s c a 1  e f a  c t o r (exponent) of the  number; 
10 = “two”  in  binary  representation. 

E x a   m p l  e . Scale  the  binary  number 

A- 101.10. 

We write  this  number so that its integral  part is zero and  it  has 1 in  the 
most  significant  position  after  the  binary  point: 

A-0.10110- IO”. 
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Next, we write  the  smaller of the  two  numbers ( E )  in  the  form 

E= plOR, 

where n is the  scale  factor of the  scaled  number A. 
We can  thus  write 'he equation 

A-B=(a-@)  IO"=(a-p+l-l) lo". 

W e  now introduce a  new number (6 1, defined a s  

(2.10) 

From  this  equality, 

i . e . , 6   i s  the o n e ' s   c o m p l e m e n t  of p 
This  complement is derived  in  the  binary  system by  substituting 1's for 

all  the 0 ' s  (to  the  right of the  binary  point) and 0's for  all  the 1 Is, and  then 
adding 1 to the  least  significant  digit.  The  validity of this  procedure is eas-  
ily  proved by adding  the  complement 6 derived  in  this way to  the  initial 
number and seeing  that  the  result  (see (2.11)) i s  indeed  1. 

Substituting p from (2. 11) into (2.  10) gives 

A-B- (a+6- 1) I@. 

Comparing  (2.10) and (2.12). we may  write 

(2.12) 

Thus,  to  subtract two numbers, we need  only  to  add  the  one's  comple- 
ment of the  subtrahend  to  the  diminued  and  to  subtract 1 from  the  result. 
The  subtraction of two  numbers  is  thus  reduced  to  addition. 

rules of logical  addition (2. 7). 
Let us consider  some  examples of subtraction of two  numbers  using  the 

E x a m p l e  1. A=1000 (eight), E=101 (five). 
Find A - E  (diminuend g rea t e r  than subtrahend). 
1 .  Scale  the  greater  number : 

A =0.1- 10'00, i ,  e .  a=0.1000. 

2. Equate  the  scale  factor of the  numbers A and E (n- 100): 

8-0.0101 1O1O0, i .   e .  p=O.OlOl. 

3.  Find  one's  complement of : 

p-0.OlOl 
1111 

0.1010 ' +  1 
1==0.101 I 
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4. Add a+&: 

+ 0.1011 
0.1ooo 

1.0011 

5. Subtract 1 from  the  sum (a+&-l): 

Thus, 

1.001 1 - 1-0.0011. 

A-B==0.0011-1O1~=1l (three). 

E x a m p l e  2. A=110 (six), B=1011 (eleven). 
Find A - B  (diminued smaller  than  subtrahend). 
1. Scale  the  greater  number : 

B=0.1011 - 10100, i.e.~-0.1011. 

2. Equate  the  scale  factor (n= 100) of the  numbers A and B :  

A =0.011- 10IOO. i .   e .  a=0.0110. 

3. Find  the  one's  complement of fl : 

p=0.1011 

+ O.OIY 

1111 

8=0.0101 

4. Add a+&: 

+ 0.0101 
0.01  10 

0.101 1 

5. Subtract 1 from  the  sum : 

a+& 1 =0.1011- 1. 

Since  the  result of this  subtraction is a  negative  number, we write it in 
the  following  form: 

a+&-1=-(1-0.1011). 
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As we have  previously  shown,  the  subtraction of the  two  numbers  in  pa- 
rentheses  can  be  reduced  to  addition. To accomplish  this,  the  one's  com- 
plement of the  subtrahend  (0.1011)  must be added  to  the  diminuend (1) and 
1 must  be  subtracted  from  the  result. 

minus  sign. 
Hence, a+6- 1 is equal  to  the  one's  complement of 0. 1011  taken  with  the 

6.  Find  the  one's  complement of 0. 1011: 

0.101 1 
1111 

0.0 1 00 
+ 1  
0.0101 

Therefore,  

c )  Binary  multiplication 

One-bit  numbers  are  multiplied  according  to  the  rules of logical  multi- 
plication ( 2 . 2 ) .  It  follows from  these  rules  that  multiplication of one- 
bit  numbers  can  be  performed  using  the  logical  element AND. 

nation of addition  and  shift. 
R-bit  numbers  are  multiplied  as  in  ordinary  algebra, i. e . ,  by  a  combi- 

E x a m  p 1 e . Multiply  101  (five)  and  101  1  (eleven). 
The  multiplication is performed  as  follows: 

x 101 

+ 1011 

101 1 

101 1 

1101 11 (fifty-five). 

d)  Binary  division 
" 

Since  one-bit  numbers  assume two  values  only, 0 and  1,  their  rules of 
division  are  very  simple: 

0: l=O, 
1 : 1=1. (2. 13) 
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R-bit   numbers  are divided a s  in  ordinary  algebra,  and  division is in  ef- 

E x a m p l e .  Divide 110111 (fifty-five)  by 101 (five). 
The  division is performed  as  follows: 

fect  reduced  to  subtraction. 

- 101 - 
0101 - 101 ooo 

3 .  ELECTRONIC LOGIC CIRCUITS 

We have  previously shown  that  the  basic  electronic  logic  elements  used 
in  the  design of logic  circuits  are  the NOT, OR,  and AND gates.  These 
gates  can  be  assembled of valves,  semiconductors,  ferrites,  superconduc- 
tor  devices,   parametric  resonators,   etc.   Because of the  limited  scope of 
this book, w e  shall  consider  only  the  more  common  gates  using  vacuum 
tubes  and  semiconductor  devices. 

FIGURE 2.14. Triode NOT gate  circuit. 

a) NOT gate  circuits 

A triode NOT circuit  (often  called i n v  e r t  e r ) is shown  in  Figure 2 . 1 4 .  
In this  circuit,  a cut-off  voltage u, is applied  to  the  grid of the  tube. When 
no  input  signal is received,  the  valve is cut off and the output u, is taken as 1. 
To simplify  the  discussion, we shall   assume  the  internal  resistance of the 
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valve  to  be  zero. If a positive  voltage  greater  than u, is applied  to  input (A), 
the  tube  conducts  heavily  and  the  output  voltage ( B )  drops  to  zero*.  The cir-  
cuit  in  Figure 2.14 thus  performs  the  negation 

A NOT gate  can  also  be  assembled  using  a  transistor  (Figure 2 .15) .  In 
this  circuit   the  transistor is cut off when  no input  signal is received.  The 
corresponding  output is then uec . When a  pulse is applied  to  the  input,  the 
t ransis tor   saturates  and the  output  voltage  drops  to  zero  (the  internal  re- 
sistance of the  saturated  transistor  is  neglected). 

- 

Input 

+ 
FIGURE 2. 15. Transistor NOT gate  circuit. 

A diode  NOT  gate is shown  in Figure 2. 16. If R I = R 2  , the  output  voltage 

is equal  to - u when the  input  voltage is zero. When a  voltage  greater  than 

u is applied at the  input, the diode is cut  off; the voltage  across  the resis- 
tance RI is opposed  to u, so that  the  output  voltage  drops  to  zero. 

1 
2 

U 

Input 

FIGURE 2. 16. Diode NOT gate  circuit. 

b) AND gate  circuits 

This  gate  has  several  inputs  whose  number is equal  to  the  number of s ig-  
nals  required  to  produce  an  output  signal. 

First consider a pentode AND circuit  (Figure 2.17). An output  signal  in 
this  circuit  is produced  only  when  positive  voltages are received  at  both  in- 
puts.  Diodes a r e  provided  to  prevent  a  positive  voltage  applied  to  one  grid 

Actually  the  tube has a  finite  internal  resistance and the output voltage  does  not drop to  zero.  This  volt- 
age.  however,  can  still be considered as the zero signal, as its  value  is  only  one-fifth to one-tenth  of  the  value 
of Y,, when it has the  value of 1. 
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from  being  impressed  on  the  second  grid. If the  internal  impedance of the 
voltage  source U, is low, these  diodes  may  be  dispensed with. 

output 

FIGURE 2. 17. Pentode AND gate. 

An  AND gate  using  transistors is shown in  Figure  2.18. An output  signal 
is produced when the  two  transistors  are  saturated. If an  n-input AND gate 
is required,  n-transistors  in  series  must be provided. 

" 

FIGURE 2. 18. Transistor AND gate  circuit. 

An AND gate  can  also be designed  using  diodes.  Figure  2.19,a  shows  a 
gate  for  four  input  signals. An output  signal is produced only when all the 
four input  signals  are  applied. When the  impedances of the  signal  sources 
are sufficiently  low,  the  circuit  can be simplified  and  takes  the  form  shown 
in Figure  2.19,b. 

c )  OR gate  circuits 

A triode OR circuit is shown in Figure  2.20.  Here  an  output  signal  is 
produced when a signal is received  at  either  inputs. A t ransis tor  OR c i r -  
cuit  is  shown  in  Figure  2.21.  The  simplest OR gate  uses  diodes.  For  ex- 
ample,  Figure  2.22  shows  a  three-input OR gate. 

Besides  the  logic  elements  described up to now, cybernetic  systems 
make  wide  use of t r i g  g e r circuits. 
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+ 
Inputs 

+ 

+ 
Output 

a 

b 

FIGURE 2. 19. Diode AND gates. 

One  type of trigger  circuit,  the  bistable  multivibra%or  (or  flip-flop),  has 
two  stable  states. One state is denoted by the  symbol "O", and the  other by 
the  symbol "1". This  trigger  can  therefore be used  as  a  static  switch  or as 
a memory cell. 

+ 

+ 

FIGURE 2. 20. Triode OR gate circuit. 

A triode  bistable  multivibrator  circuit is shown in  Figure 2.23. In this  circuit, 
the  grid of each  tube is coupled  through  a resistor  to  the  plate of the  other  tube. 

When the  supply  voltage U, is applied  to  the  circuit,  the  current  pass- 
ing  through  the  two  tubes  will  not be equal  because of some  difference  in 
their  characteristics.  Let  the  higher  current  pass  through T I .  Owing to  the 
greater  voltage  drop  across R a ,  the  voltage  at  point a (relative to U, ) wil l  
be less than  the  voltage  at  point 6. The  grid  voltage of T O  will therefore  be 
lower  than  the  grid  voltage of TI, which will further  decrease  the  current 
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through TZ. The  voltage  at  point b will consequently  further  increase with 
respect  to  the  voltage  at  point a. This  action  continues  until T I  is fully  con- 
ducting,  and T2 is cut off. 

Input 

Input 

A- 

B- 

+ 
FIGURE 2. 21. Transistsr OR gate  circuit. 

Inputs + i 7 T :  Output 

FIGURE 2. 22. Diode OR gate. 

Since T I  is fully  conducting,  the  voltage  at  point a is  zero  (for  the  sake of 
simplicity,  the  resistance of the  tube is neglected).  The  grid  voltage of T1 
will  therefore be negative,  thus  maintaining  cut-off.  Since T2 is  cut off,  the 
voltage  at  point b is approximately  equal  to +u.. The  voltages  and  the r e  - 
sis tors  in  the  circuit  are so chosen  that  the  grid  voltage of TI is positive 
and the  tube  remains  fully  conducting. 

8-Uo 
FIGURE 2. 23. Elstable  rnultivibrator circuit 
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Both tubes wil l  remain in their  respective  states  until  further  triggering 

A bistable  multivibrator  can  also be assembled on t ransis tors .  One of 
action  takes  place. 

these  circuits is shown  in  Figure 2 . 2 4 .  

FIGURE 2. 24. A rranslstor blsrablc nrulrivibraror. 

Let   t ransis tor  TI be  saturated and transistor T2 be cut  off.  Neglecting  the 
emitter-collector  resistance,  the  voltage at point a may be  taken as equal 
to +u,,. In this  case, no current  flows  through Ra and Rc ;the  bias  voltage of 
T2 (uebl) is   zero and Tz is cut off.  Since T2 is cut off, the  voltage at point b 
is  equal to-u,,. A current  i, from  the  supply u flows  through Rz, R , ,  and Rs 
(solid  arrows  in  Figure 2.24) .  The  bias voltage of TI is therefore  equal  to 
U e b ,  =ill?, . Resistors R2, R1 ,and Rs a r e  so chosen  that  at  this  voltage T1 is 
full  on. 

Transis tor  TI will remain  full  on and T2 cut off until a triggering  voltage, 
equal  to, or greater  than, u&, , is applied  to  input A.  It  can be seen  from  the  cir- 
cuit in Figure 2.24, that in this  case,  TI w i l l  be turned off, causing point a 
to  acquire a negative  voltage. A current  i2 (dashed arrows)  flows  through 
Rq,  Rs, &, and a positive  bias  voltage Uebr =iZ& is now applied  to T2 which 
is consequently  triggered. 

If now the  voltage  applied  to  input A is disconnected,  the  transistors re- 
main  in  their state: TI is cut off and T2 is full on. This is so because  the  volt- 
age at point b is now +u,, Hence,  the  bias  voltage of TI (ue,J is zero  and  the 
transistor  remains  cut off. The  voltage at point a is maintained at-u,,, and 
the  current flow  through R4 maintains  the  voltage ue$ keeping Tz fully  on. If 
now a triggering  voltage is applied  to input B of the  circuit,  the  circuit  is 
restored  to its previous state, i. e.,  TI is turned  on and ?z is cut off. 

Thus, when an external  signal is received  at  input A,  the  trigger  circuit 
passes  from  one  stable state to  another and a 1 is produced  at output C. 
This 1 is "cleared" when a signal is received at input E .  Consequently,  the 
bistable  multivibrator is widely  used  in  automatic  control  systems as a 
memory cell and as a static  relay  (switching  element). 
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It  should  be  noted  that  a  bistable  multivibrator is not an  independent  lo- 
gical  element.  It  can be designed  using OR and NOT gates.  Consider  the 
circuit shown  in  Figure 2.25. Assume that  the  output C is 1, and no signals 
are  received  at  inputs A and B .  The 1 from output C is fed  back to the  input 
of the OR gate.  Since  a 1 is now received  at  the input of OR,, the  input of 
NOT, is 0. The  output  from  the  circuit  will  be  set  to 1 indefinitely.  In  other 
words,  the  circuit  "stores" a 1. 

circuit  output (C) is thus  cleared  to 0. In  this  case,  signal B "cleared"  the 
information  stored in the  memory cell. 

Let now a  signal be fed to input B .  The input of  NOT, is now also 1. The 

FIGURE 2. 25. Bistable  rnultivibrator designed of OR and NOT gates. 

When the  signal B is switched  off,  the  output  remains  at 0 .  This 0 i s   t rans-  
mitted  by  the  feedback  loop  to  the  input  of  the OR, gate. Now the  input of the 
NOT, gate is 1. Hence, after  the  signal  at B has  been  lifted,  the  circuit  re- 
mains  cleared  to 0. When a signal is received  at input A,  the  output C is 
again set to 1. When signal A is lifted,  the  circuit  remains  set  to 1. In  this 
case we say  that  the  circuit  "stores"  a  one. 

A memory  cell is represented  symbolically by a rectangle  with  a  letter 
M inscribed  (Figure 2 .26 ) .  When a signal is received  at input A, the  circuit 
stores  the  signal. When a  signal is received  at input B .  the  output is cleared 
to 0. 

FIGURE 2. 26. Symbolic represen- 
tation of a  memory cell .  

Besides  bistable  multivibrators.  memory  cells  may  also  be  made of elec- 
trostatic,  magnetic,  and  electromechanical  elements. 

4 .  DIODE MATRICES 

A d i o  d  e  m a t  r i x is a network of horizontal and vertical  conductors, 
called  wires  (Figure 2.2'7). connected  together  by  semiconductor  diodes at 
predetermined  intersection  points.  The  horizontal  wires  are  generally  used 
as inputs,  and  the  vertical as outputs. For  example, if we short-circuit  the 
diodes in Figure 2.27 and  apply a positive  voltage  to  input a ,  a  signal is 
produced at every output. If the  short-circuits  are  removed, a signal  will be 
produced  at  the  third  and  the first outputs  only. 
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e 

3 2 0 
Outputs (binary  positions) 

FIGURE 2. 27. Diagram of a diode  matrix. 

Since  a  diode  matrix  “stores”  the rules (a program)  for  the  gating of in- 
put signals, it is often  called  a  d i o   d e  - m a t  r i x  m  e m o r y . Depending on 
the  connections,  the  diode  matrix  will  perform  various  logical  operations  in 
automatic-control  systems.  Let  us now consider  the  most  common  applica- 
tions of the  diode  matrix. 

a) Logical OR circuit 

Each  horizontal  wire of the  matrix  (Figure 2 . 2 7 )  is the  input  to  an OR 
gate. For  example,  output 3 performs  the  logical  operation 

This  matrix  can be used a s  a  binary  encoder.  Let  each  vertical  wire  repre- 
sent a certain  digit of a binary  number. When a  positive  voltage is applied 
to input a, signals are  produced at outputs 1 and 3, and represent  the  bi- 
nary  number 1010. Input a is thus  assigned  the  number 1010, o r  in  other 
words  input a is coded as 1010. The  other  inputs  are  similarly  coded.  The 
code for  the  signals  received  at  the  inputs is given  in  Table 2.2 .  

TABLE 2.2 
Coding of s i p a l s  

Input 

1001 0110 1100 0101 1010 Code 

c d c b 0 

Consider  the  use of an OR matrix  for  automatic-signal  control  in a rail- 
way terminal,  with  the  timetable  as  given in Table 2.3. 

The  automatic-signal  control  is  realized  as  follows. A t imer  is connect- 
ed  to the  matrix  input  (Figure 2.28). This  timer  applies  a  positive  voltage 
to input a, at  12.37hrs,  toinput  bat2.05hrs,  etc.  Whenthisvoltageisapplied, 
the  diode  matrix  produces  a  binary-coded  signal.  The  decoder  interprets 
this  signal  and  switches-in  the  appropriate  lights. 
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TABLE 2.3 

Train timetable 

Departure time 

12 .31  
14.05 

Riga-Moscow Exprcsr 

16 .38  
Riga-Leningrad Express 
Riga-Sirnferopol' Local 

11.41 Riga-Liepaya  Local 

" . , ~es t inat io i :  ~ .~ . .~ 

Matrix 

I Decoder I 

Signal lights 

FIGURE 2. 28. Automatic-signal  control. 

The  train  destinations  can  be  coded  as  follows: 

Riga-hloscow . . . . . . . . . . . . . . .  001 
Riga-Leningrad . . . . . . . . . . . . . . .  010 
Riga-Simferopol'. . . . . . . . . . . . . . .  011 
Riga-Liepaya . . . . . . . . . . . . . .  ,100 

The  type of t ra in  and the  number of platform of departure  are coded sim- 
ilarly: 

Express . . . . . . . . . . . . . . . . . . . .  01 Platform No. 1 . . . . . . . . . . . . . . .  .01 
Local . . . . . . . . . . . . . . . . . . . .  10 Platform No. 2 . . . . . . . . . . . . . . .  .10 

Platform No. 3 .  . . . . . . . . . . . . . . .  11 

Since  the  information as to  the  destination,  the  type of train, and the 
platform  number  must  be  available  simultaneously,  all  the  three  matrices 
may  use  common  inputs. 

applies a positive  voltage (1) to input o of this  matrix.  The first matrix 
(destiniltion)  thus  produces  an  output  signal 001, the  code of the  Riga- 
Moscow train.  The  second  matrix  (train  type)  produces  an  output  signal 01, 
which  corresponds  to  the  information  "express".  Finally,  the  third  matrix  spe- 
cifies  platformNo. 1 (01). The  matrices  functionsimilarly when signals  are 
fed  to  the  other  inputs. 

correspondingly  modified.  For  example, if the  Riga-Moscow  train  must  be 

The  result ing  matrices  are shown  in Figure 2.29. A t  12.37 the  timer 

If the  information  on  the  trains'  movements  changes,  the  matrix  array is 
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dispatched  from  the  second  platform  and  not  the  first,  the  diode  connecting 
input u with  output 0 in the  "platform  number"  matrix  must  be  removed, 
and used  to  connect  input u with  output 1. 

Q 

b 
C 

d 

I. i &  i o  1 4  
" 

Destination Type of train Platform No. 

FIGURE 2. 29. Encoding matrix. 

If there is no  need  to  modify  the  matrix  array,  the  diodes are soldered 
in  position. If, however,  the  array  must  be  often  modified,  the  diodes  are 
connected  by  means of screws and  fasteners. 

electromagnetic  relay  circuit  for  decoding  the  platform is shown  in  Fig- 
u re  2.30. The  matrix  producing  the  platform-number  information  has two 
outputs  (representing  two-bit  numbers).  The  decoder  therefore  requires 
two  relays.  The  voltage  from  the  output  corresponding  to  the  first-order 
bit is applied  to  the  coil of the  left  relay,  and  the  voltage  from  the  output 
corresponding  to  the  zero-order  bit is applied  to  the  right  relay. When no 
voltage is applied  to  the  coil,  the  contacts  remain  in  the  upper  position, 
which represents 0. When voltage is applied  to  the  coil,  the  relay  contacts 
switch  over  to  the  lower  position which represents 1. 

The  binary  code  produced at the  matrix  output  must  be  decoded. A simple 

Matrix outputs 

FIGURE 2.30. A decoder for the information  on  plat- 
form numbers. 
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The  decoder  functions  as  follows.  Let a signal 10 bc  produced  by  the 
"platform  number"  matrix.  The left relay is energized.  while  the  right re- 
mains  de-energized,  Light  appears  under  "Platform No. 2". The  decoder 
functions  similarly when other  codes are received  from  the  matrix. 

ed  similarly  to  the  decoder of the  "platform  number"  matrix. 

facilities  to  be  switched by the  matrix. In this  case no  decoder is needed 

Decoders  for  the  "destination"  and  the  "train  type"  matrices  are  design- 

In  some  cases  the  number of matrix  outputs  are  equal  to  the  number of 

and  the  output  signals  are  fed  directly 
to  the  facilities  controlled. An example 

8 k v  of such a matrix is a programmed  de- 
vice  for  the  automatic  control of pa- 
rallel   transformers.  

t ransformers  of  1, 3, and 5 kva for  
stepping down 35 kv to  6 kv  (Fig- 
ure  2.31). The  problem i s  to  decide 
which transformers  are  to  be  switched 
in   for  a given  power  flow  through  the 
substation.  This would save  electric 

A transformer  substation  has  three 

FIGURE 2.31. Schematic  diagram of a trans- 
former substation. 

power by lowering  the  no-load  losses 
in  the  transformers. For  example, if  
3 kva is channeled  through  the  sub- 
station,  only  the 3 kva transformer 

should  be  switched  in,  while  the  other  transformers  should  remain  discon- 
nected. 

A commutator is designed which senses  the  power  flow  through  the  sub- 
station,  and  actuates  the  corresponding  input  contact (Figure 2.  32). If the 
power is 1 kva,  contact 1 is closed; if the  power is 2 kva,  contact 2 is clos- 
ed,  etc.  Since  the  maximum  power  through  the  substation is 9 kva, there 
is a  total of nine  such  contacts. 

I 
2 

3 

s f  
.,e 5 

Z 6  
7 
I 

9 

n 

cu 

Transformer switcning  signals 
1 kva 3 kva 5 kva 

FIGURE 2.32. A matrix for transformer control. 
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The  contacts of this  commutator are connected  to the nine  inputs  (Fig- 
u re  2.32). The  vertical  wires of the  matrix  are  connected  to  the  switches 
controlling  the  transformer  connections  to  the  bus  bars of the  substation. 
The  diodes in the  matrix are so arranged  that  the  power of the  actuated 
t ransformers  is equal  to  the  power  channeled  through  the  station. For   exam-  
ple, if the  power  demand is 6 kva,  input  number 6 is connected by the  appro- 
priate  diodes  to  the first and  third  vertical  wires,  which  switch-inthe 1 kva 
and 5 kva transformers.  

The  matrix in Figure 2. 32 performs  the  following  logical  operations:. 
a )  connects the 1 kva transformer if the  power  channel  through  the  sub- 

b)  connects  the 3 kva  transformer if the  power is 2, OR 3, OR 4, OR 7, 

c )  connects  the 5 kva t ransformer if the  power is 5, OR 6 ,  OR 7, OR 8, 

If the  inputs  and  the  outputs in the  previous  matrices  are  interchanged, 

station is 1, OR 4, OR 6 ,  OR 9 kva; 

OR 8, OR 9 kva; 

or 9 kva. 

we obtain  matrices  performing  the  logical AND operation. 

b)  Logical AND circuit 

A matrix  performing  the  logical AND operation is shown  in  Figure 2. 33. 
This  matrix,  unlike  the  matrix  shown  in  Figure 2.27, converts  binary  in- 
formation  into  a  control  signal.  It is therefore  called  a  de  c o d  e r . 

+u 
FIGURE 2. 33. A matrix  performing the logical AND 
Operation. 

Four-bit  information is fed  into  the  relays of contacts 0 ,  I, 11, and 111, 
which are  the  matrix  inputs.  For  example,  suppose  that  device A must  be 
energized when the  binary  signal 1010 is received.  Device A is connected 
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to  a  vertical  wire which is connected  by  diodes  to  the  appropriate  inputs,  as 
shown  in  Figure 2.33. It  receives  a  signal  only if contacts I11 and I are   in  
the  lower  position,  and  contacts I1 and 0 are  in  the  upper  position.  Other- 
wise,  device A is shunted  by  one of the  diodes  and  the  voltage  applied  to  it 
is zero.  Device B is similarly  controlled by the  signal 1001. 

of devices  to be  controlled.  The  decoder  may  therefore  have  one  or  more 
vertical  wires.  The  number of horizontal  wires  required is twice  the  number 
of bits  in  the  binary-coded  number. 

The  diodes  are  connected  in  the  matrix  (Figure 2.33) according to the 
following  rule:  the  diodes  connected  to  the  vertical  conductor  must  gate  a 
number which is the  negation of the  input  code. For  example, if  device A is 
triggered when  the  number  1010 is fed  into  the  matrix,  the  diodes  connected 
to its vertical  wire  must  gate  the  number 0101. 

The  number of vertical  wires  in  the  decoder is determined  by  the  number 

Signal lights 

FlGURE 2. 34. Decoder for "destination " signals. 

Let us consider  a  matrix  performing  the AND operator  and  decoding  the 

A s  we have  previously  shown,  the  matrix  in  Figure 2.29 generates  the 
binary  signal  "destination"  (Figure 2,29). 

following  codes: 

Riga-Moscow . . . . . . . . . . . . . .  001 
Riga-Leningrad . . . . . . . . . . . . . .  010 
Riga-Simferopol'. . . . . . . . . . . . . .  011 
Riga-Liepaya . . . . . . . . . . . . . .  100 
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Since a three-bit  code is used  to  control  four  different  signal  lights,  the 
matrix  must  have  three  double  inputs  and  four  outputs,  as  shown  in  Figure 
2.34. 

5. DESIGN OF ENCODING MATRICES 

The  numbers  encoded by a diode matrix  can be  written  in  normal  se- 
quence,  namely 1, 10, ll, 100, etc.  However,  to  minimize  the  number of 
diodes  used  in  the  matrix,  numbers  containing  the  greatest  number of ones 
a r e  often  omitted.  Inthefirstcasewehave a n o r m a l l y   f i l l e d   m a t -  
r i x ,  and  in  the  second  case a m a t r i x   w i t h   n u m b e r   g a p s .  

A s  we have  previously shown in (1. I) ,  the  amount of numbers which 

a )  Calculation of the  total  number of diodes  required  in a matrix 

We should  first  observe  that  an  R-bit  number is always  written  using R 
binary  digits with  a 1 in  the  most  significant  position.  For  example,  three- 
bit  numbers ( R = 3 )  are  writ ten as follows: 

100  
101 
I. 10 
111 (2. 14) 

Such numbers   as  010 and 011, although  written  using  three  bits,  are in 
effect  two-bit  numbers.  Leading  zeros  are  written  to  facilitate  comparison 
with three-bit  numbers.  Still, it should be kept  in  mind  that  in R positions 
we may  represent not  only  R-bit  numbers, but also all  the  numbers  having 
less  than R positions. For  example,  in  three  positions we may  also  write 
the  two-  and  one-bit  numbers: 

010 000 
01 1 001 

A s  we have  previously  shown  in (1. l), the  amount of numbers which 
can  be  represented by R digits  is  given by the  series 

N=20+2'+22+ . . . +2R"= 2 2 4  
R-I 

k d  

From  this  expression  it  can  be  seen  that  in  the  R-th  position we have  the 
following  amount of R-bit  numbers: 

n R = 2 w .  (2. 15) 
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E x a m p l e .  How many  three-bit  numbers (R-3)  are   there?  

n3-23-1=4. 

Consider  the  structure of the  R-bit  numbers  in (2.14). All  these  numbers 
have  in  their  most  significant  position a 1, each  one of which requires  a 
diode.  In all the  other  positions,  the  number 1 (which requires a diode)  oc- 
cu r s  in only  half the  number of digits.  Therefore  the  number of diodes r e -  
quired  to  code  these  R-bit  numbers  may  be  expressed by the  equation 

DR=2R"+ 3 1 [2R-1(R--1)]. 

Simplifying  further, we derive  the  expression 

(2.16) 

Since  all  the  numbers of a lower  order  than R can  also  be  represented in 
R  positions,  the  total  number of diodes  in an R-bit  matrix is given by the 
equation 

(2. 17) 

E x a m p l e .  Determine  the  number of diodes  required  for  a  four-bit 
matr ix  (R-4). 

D = x  2 m 3 ( m + l ) - 2 - ~ . 2 + 2 0 . 3 + 2 ~ . 4 + 2 ~ . 5 ~ 3 2 .  
4 

r u l  

b)  Calculation of the  amount of R-bit  numbers  having  the  same 
number of diodes 

In  an  R-bit  matrix we have  numbers  represented by 1, 2, 3, . . . R diodes. 
If the  number of diodes is denoted by the  let ter x ,  the  following  inequality 
is always  satisfied: 

R ,x> 1. (2.18) 

Let  us  develop  a  procedure  for  determining how many  R-bit  numbers 
have  the  same  number of diodes.  Take  for  example  the case where R = 4, 
where  there is a total of eight  four-bit  numbers: 

l o o 0  
1001 
1010 
1011 
1100 
1101 
1110 
l l l l  
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These  numbers  are divided  into four groups  and  written  in a different se- 
quence: 

1 011 
1 101 I11 
1 110 
1 111 IV 

An examination of these  groups  shows  that  among  R-bit  numbers  there is 
but  a  single  number  using R diodes, and a  single  number  using  one  diode: 

The  second  and  the  third  group,  omitting  the 1 in  the  most  significant  posi- 
tions, are in  fact  permutations of one or two  diodes  in  three  positions.  Gen- 
eralizing, we may  say  that  these  numbers  are  obtained by permutating 
from  one  to R - 2  diodes in R-1 positions. 

the  number of all possible  combinations of n elements  taken rn at  a  time is 
given  by  the  equation 

The  theorem of combinations known from  elementary  algebra  states  that 

C:= n! 
m!(n - m)!  

The  amount of numbers  having x diodes is therefore  equal  to 

( 2 . 2 1 )  

The  expression ( R > x > l )  indicates  that  this  equation  applies  for  all x less 
than R and greater  than 1. The  difference (x-1) enters  the  denominator of 
this  equation,  since  the 1 diode  occupying  the  most  significant  position-is 
not  permutated.  Since  this  diode is being  disregarded,  the  most  significant 
position  must  also  be  disregarded  in  calculating  the  permutation.  Therefore, 
the  number of positions in the  numerator of ( 2 . 2 1 )  is also  reduced by 
one,  i .e.,  R - 1 .  

E x a m  p 1 e .  Determine  the  amount of five-bit (R=5)  numbers  having 
1, 2, 3, 4, and 5 diodes. 

The  number of numerals  having 1 and 5 diodes is determined by ( 2 . 1 9 )  
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and  (2.20),  andthe  number of numerals  having 2, 3, and 4 diodes are calcu- 
lated  using (2.21)::: 

We thus  have 

x 1 2 3 4 5  
$ D l 4 6 4 1  

c )  Calculation of the  amount of numbers  having x diodes  in R positions 

We have  already  observed  that R positions  will  represent not only  R-bit 

In (2 .20)  we noted  that R diodes  occur  in a single  number  only,  that 
numbers, but also all  numbers of lower  order  than R .  

consisting of R ones: 

N$D= 1. ( 2 . 2 2 )  

R-bit  numbers  (see (2.19)), ( R  - 1)-bit  numbers,  (R-2)-bit  numbers, etc., 
all  have a single  number  with  one  diode.  Therefore  in R positions we have 
the  following  number of numerals  with  one  diode: 

Nllpn'R. (2.23) 

Let us now consider  the  cases when R>x>l. 
The  amount of R-bit  numbers  having X diodes is determined by (2.21 ): 

n p  = ( R - I ) !  
(X-I)!(R-X)! 

[Actually (2.21) is valid for x = 1, as O !  = 1. Alternatively,  if (2.21) is written 

it will  give the amount of numbers having x diodes for all  values  of-x  except 1 .1  
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The  same  applies for all lower-order  numbers, 

(R-3 ) !  
(x-  1) I(R-x-2)! 

. . . . . . . . . . . .  
I 

Therefore  the  total  number of numerals  having x diodes is given  by  the 
equation 

R 
N X D - l +  R -  n;D. ( 2 . 2 4 )  

-1 

The  term E n  determines  the  number of numerals  obtained  by  the  permuta- 
tion of all   the  numbers  fromx+lto R .  The 1 is added to   this   term  to   in-  
clude  the  one  additional  number  having  all  ones  and  has n diodes.  It  should 
be  noted  that  the  lowest  order still having  numbers  with x diodes  can  be  de- 
termined by the  expression 

Inserting  for niD in ( 2 .  24), we obtain 

( 2 . 2 5 )  

Let us consider  three  particular  cases of this  equation.  Substitute xaR-1,  
R - 2 .  and f?-3  in (2.25). After  simple  manipulations we obtain 

( 2 . 2 6 )  

( 2 . 2 7 )  

(2.28) 

All  lower  -order  expressions  can  be  derived  similarly. 

tions ( R = 7 )  have 6 ,   5 ,  and 4 diodes. 

bers.  Inserting R=7 into ( 2 . 2 7 )  and (2.28), we find  that  five  diodes  occur 
in  twenty-one  numbers,  and  four  diodes  in  thirty-five  numbers. 

E x a m  p 1 e .  Determine how many  numbers  represented  in  seven  posi- 

From (2.26), w e  see that six (R- f=6) diodes  occur  in  seven  num- 
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d )  Matrices with  one extra  position 

It is sometimes  desirable  to  introduce  an  extra  position  into  the  matrix, 
and thus  avoid  the  necessity of representing  numbers with numerous  diodes. 
A certain  economy of diodes is thus  achieved. 

As we have  previously  seen  in (1.31, the  number of positions  required 
for  the  sequential  representation of N numbers is equal  to 

R=logs (N+ 1). 

To  simplify  the  presentation, we shall  assume  that R is an  integer. We 
introduce  an  additional  position  into  the  matrix 

We can  thus  remove  from  the  matrix  ANnumerals  requiring  the  largest 

The  maximum  number of diodes R occurs  (see (2 .22 ) )  in a single  numeral 
number of diodes. 

only. R - 1  diodes  occur in NF-l)Dnumerals, R - 2  diodes  in Ng-2)D numerals, 
etc. Since  the  total  number of numerals which canbe  removed (see (2.29))is 
2Rl-l, we have 

o r  

L-I 

2R4,1+ N($-WD+qQ:-W. (2.30) 

In addition,  this  equation  shows  the  order  in which the 2"" numbers are 
eliminated. First the  single  number with R ,  diodes  is  removed.  Then  all 
numbers with RI-1 diodes(NbF-l)D)are  eliminated,  followed by all  numbers 
withR1-2diodes. etc. However,  the  last  group of numbers,  those  having R1-k 
diodes,  cannot  always  be  removed in its  entirety. W e  therefore  remove  only 
part (4) of these  numbers.  The  coefficients k and q are so  chosen  that  the 
left-hand  side of equation (2. 30) is equal to the  right-hand  side. 

F rom (2. 16 1, w e  see that  the  introduction of an additional  position  into 
a matrix  in which all the  numbers  are  represented  sequentially,  increases 
the  number of diodes  required. 

M I  

AD1"2** (R1+1). (2.31) 

On  the  other  hand,  from  (2.30) we see that  the  omission of 2Rl-l numerals 
having  the  highest  number of diodes  enables  us  to  save A& diodes: 

b-1 

ADt=Rl+ 2 (RI-rn)Ng-=~ +q(RI-k)Nkehm.  (2.32) 
m=l 
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Thus,  the  net  saving  in  diodes is equal to  

E x a m  p 1 e .  From (1.3) we have  seen  that 31 numbers  in  sequence  can 
be  represented in 

R=log, (31+1)=5positions. 

Find  the  number of diodes  saved i f  one  additional  position is introduced 

1 .  Find  the  coefficients k and q : 
into  the  matrix (R1=R+I=6).  

a)  the  left -hand side of equation (2. 30) is equal  to 

2 r1-1 = 25 = 32; 

b)  the  terms  in  the  right-hand  side of (2. 30) are obtained from 
(2. 261, (2.27), and (2.28); 

c )  equating  the left- and the  right-hand  sides of 
the  above  values: 

(2. 30); inserting 

32- 1 +6+ 1!5+q-20. 

Hence, k=3 .  9-0.5. 
2. The  saving  achieved (see (2.22)): 

k-1 

A D = R I +  ( R I - m ) N ~ - m ~ +  
A 1  

+ q ( R 1 - R ) N ~ - k ) D - 2 ~ - 2 ( R ~ + 1 ) ~  
=6+5~6+4~15+0.5~3~20-16(6+1)=  

= 126-1 12= 14 diodes. 

The  total  number of diodes in a R-equation  matrix (2. 1 7 )  is 

4 
D= 2m-2(m+l)=2-1-2+20-3+21-4+22-5+25-6=80diodes. 

m=l 
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We have  thus  reduced  the  number of diodes  by 

AD 14 * 100 - . loo= ~ - 17.5% diodes. D 80 

6. STATIC SWITCHING DEVICES IN 
DIGITAL AUTOMATIC -CONTROL 

SYSTEMS 

Until recently,  most  switching  operations  in  automatic-control  systems 
were  carr ied out by electromagnetic  relays which  involved  moving  mechani- 
cal  contacts.  These  contacts  considerably  lowered  the  reliability of automa- 
tic-control  systems, and the  inductance of the  relay  coils  increased  the  res- 
ponse  time of the  systems. 

The  development of electronic  logical  elements and static  switching  de- 
vices now makes  it  possible  to  replace  the  cumbersome  relay  mechanisms 
by more  reliable,  lightweight,  compact, and high-speed  elements.  Some of 
the  static  elements  used in automatic  -control  circuits  are vacuum  and gas - 
discharge  tubes,  magnetic  amplifiers, and semiconductor  devices. Although 
magnetic  amplifiers and semiconductor  devices  are not ideal  circuit  break- 
ers (the  current  does not drop  to  zero  whenacircuit is disconnected  bythese 
elements),  they  are  very  popular  because of their  ruggedness and  long ser- 
vice  life. 

siderably  lowers  the  time  required  for  system  design. In  addition,  their 
use  facilitates  maintenance  since a new standard  element  can  simply  be 
plugged  -in to  replace a malfunctioning  component. 

A recent  advance  in  the  design of electronic  logical  elements is the  use 
of s o 1 i d  c i r c u i t s . In these  c i rcui ts   there   are  no individual  resistors, 
diodes,  transistors,  etc. A solid  circuit is generallya  germanium or silicon 
plate whose a rea   i s  no greater  than  the  cross  section of a match  head. 
Diodes,  transistors,  capacitors, and resistors  are  formed on this  plate us- 
ing  etching,  diffusion,  andothertechniques. A single  crystal without  any  con- 
necting  wires  is  thus  capable of performing  very  complicated  logical  trans- 
formations.  Since  solid  circuits  are not soldered,  they  are  exceptionally  re- 
liable and their  use is expected  to  become  very  widespread  in  automatic- 
control  systems. 

gical  elements.  Since  these  logical  elements  perform  all  the  functions of 
the  relay  circuits,  they  can  be  called l o g i c a l   e q u i v a l e n t s .  

se r ies ,  and  whose  contacts are normally open. Current  will flow in  the cir- 
cuit  only when voltage is applied  to  the  coils of all the  three  relays (A. B ,  
and C ) .  The  relays  thus  perform  the  following  logical  operation: 

The  use of standard  logical  elements  in  automatic-control  systems  con- 

Let us first  consider  the  simplest  relay  circuits and their  equivalent lo-  

Consider  the  circuit  in  Figure 2. 35 where  three  relays are connected in 

D-ABC. 
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1 

+ D 
A 

FIGURE 2.35. Logical  equivalent of three  relays whose contacts 
are connected in series. 

This  logical  operation  can  be  performed  using a single AND element  (Fig- 
ure  2.35) 

3 I 

FIGURE 2. 36. The  logical  equivalent of three relays 
whose  contacts are connected in parallel. 

If the  contacts of the  three  relays  are  connected  in  parallel  (Figure 2. 36), 
they  perform  the  logical  operation D=A+B+C. They  can  therefore  be  re- 
placed by an OR element. 

a r e  connected  in ser ies   (Figure 2.37).  Since  the  equivalent  logical  opera- 
tion is 

Consider now the  case of three  relays whose normally  closed  contacts 

D = A + B + C ,  

it can  be  performed by using  two  elements: OR and NOT. 
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6 
A 
C 

FIGURE 2.37. The  logical  equivalent of three  relays whose 
normally  closed  contacts are connected  in  series. 

Relays  whose  normally  closed  contacts  are  connected  in  parallel  (Fig- 
u re  2. 38) perform  the  logical  operation 

D-ABC. 

They  can  therefore be replaced by a  circuit  consisting of AND and NOT ele- 
ments. 

+ 

P -D 

FIGURE 2.38. The  logical  equivalent of three relays whose 
normally  closed  contacts  are  connected in parallel and their 
symbolic  equivalent. 

A switch  (Figure 2.39) performs two  logical  operations: 

It  can  therefore  be  replaced by a NOT element. 

control  systems. A characterist ic  feature of these  switches is that  by  means 
Self-holding  relays  (Figure 2.40)  are  very  frequently  used  in  automatic- 



of a  self-holding  contact  they  impress  voltage  on  their own coil, so that  no 
change-over  occurs when the  signal A is removed.  The  relay is r e se t  by 
means of push button K. The self -holding relay  performs  the  following lo- 
gical  operations: 

B=Z; C=A+C. 

These  operations  (provided  the  inputs  and  the  outputs of the  logic  elements 
are  appropriately  matched)  can  be  performed by  the  logic  circuit  shown  in 
Figure 2 .40 .  

+-+ 
A- 

- 3- 
FIGURE 2.39. The logical  equivalent 
of a switch. 

+& 

+ 

A 

I 
.. 

-c 
FIGURE 2.40. The logical  equivalent of a self-holding relay. 

The  more  complicated  the  relay  circuit,  the  greater  the  number of logic 
elements  required  in  the  equivalent  circuit.  The  choice of these  elements 
and their  interconnections  are  made by using  Boolean  algebra  to  describe 
the  relay  circuit. 
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A t  present,  universal  logic  elements are being  put  into  production which 
will  enable  the  design of any  composite  logic  circuit.  These  elements  are 
manufactured as printed-circuit  units which are  very  convenient  for  mount- 
ing and adjusting.  Versatility is ensured by producing  these  circuits  in units 
that  can  be  used  in  many  different  combinations. 

Consider,  for  anexample,  the  designof  auniversal AND gate  (Figure 2.41).  
The  gate  consists  (Figure  2.41,a) of three  identical  sections. to& are 
the  inputs, BI toBs are the  outputs.  In  Figure  2.41, b, terminals B are   con-  
nected with their  corresponding  terminals K, forming  three AND gates  each 
having two inputs. When the  terminals  are  connected as in  Figure 2.41, c, 
we obtain  two AND gates, one  with  two inputs  (Aland&), and one  with four in- 
puts  (&to&).  Connecting  the  terminals  according  to  Figure  2.41, d, we ob- 
tain one AND gate with six  inputs. 

b C d 

a 

FIGURE 2.41. A universal AND gate:  a-internal printed  as- 
sembly; b. c. d - external  terminals and connections. 

Using  standard NOT,  AND, and OR gates  cybernetic  automatic-control 
systems  may  be  designed  capable of complex  logical  functions. 

To match a logic  circuit  assembled of universal  elements with a  large 
automatic-control  system,  suitable  convertors  must  be  introduced  to  match 
the  voltages and the  currents  in  the  different  parts of the  system.  Let us 
consider  an  example of an  automatic-control  system  assembled of logic  ele- 
ments. 

Figure 2.42 shows  a  tank  from  which water flows  continuously.  The  tank 
receives  water  from a pipe controlled by  valve K. Our  problem is to  de- 
velop a system which will  automatically  regulate  the  level of water  in  the 
tank.  The  valve K should  open when the  water  level  drops below  point a, and 
close when the  level  reaches point b. 

Three  cases  are  possible as regards  the  position of valve K: 
a)  water  level below  point u -the  valve  must  be  open; 
b)  water  level  between  points a and b -the  valve  should  either  be  open 
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(if the  tank is fi l l ing)  or  closed (if the  tank is emptying); 
c )  water  level  reaching  point b -the  valve  must  close. 

K 
c 

b m  

Solenoid 

C 

A 

FIGURE 2.42. A sysrem for rhe automatic regularion of water level  
i n  a tank. 

Two transducers  are  used  to  signal  the  water  level  in  the  tank.  The first 
transducer  gives  a  signal ( A )  when the  water  level is at point a and  higher. 
The  second  transducer  produces a signal ( B )  when the  water  level  reaches 
point b .  

trol   circuit   can be represented as follows: 
Then,  in  accordance  with  the  three  cases  for  the  valve,  the  logical  con- 

1) if A=O and B=O, the  valve  should  be  opened  (signal C); 
2 )  if  A-1 and B=O, the  position of the  valve  need  not  be  changed; 
3) if A = 1 and B= 1, the  valve  must be closed. 
Let  us now draw a logic  circuit  satisfying  these  conditions.  From  con- 

dition 1 it follows  that  the  signal  to  open  the  valve  (c)is  determined  by  the 
expression 

(2. 34) 

This  equation  satisfies  condition 1. If the  water  level is below  point a, A-0 
and B-0 .  Therefore c- 1 ,  i. e.,  a  signal is sent  to  open  the  valve.  However, 
condition 2 is not  satisfied,  for when the  water  level  rises  above  point a, 
the first transducer will  emit  a  signal A-1, and according  to (2.34) C=O. 
The  valve  will  thus  close,  although it should  remain open. To avoid  this sit- 
uation, (2. 34) must  be  modified as follows: : 

c- (A+C)B. (2.35) 

This  logical  operation  regulates  the  system as follows: 
a)A=O, B=O; then C-1 ,  i. e., when the  water  level is below  point a, the 

valve  opens; 
b)A-l, B - 0 ;  then c-1, i. e. ,  when the  level of the  water rises above 

point a (after the  valve  has  been  opened),  the  valve  remains  open; 
c )A=l ,  B - 1 ;  thenC=O, i.e., when water  reaches  point 6 ,  the  valve 

closes; 
d)  A- 1, B - 0 ;  then c-0, i. e . ,  as the  water  level  drops  (after  the  valve 

has  been  closed),  the  valve  remains  closed. 
The  logical  proposition (2.35) thus  fully satisfies the  requirements  for 

automatic  regulation of the  water  level.  This  proposition  (Figure 2.42) is 
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realized  using  four  gates (two NOT gates, one AND and  one OR gate).  The 
input of the AND gate is fed to  the  solenoid. When voltage is applied  to  the 
solenoid (C=l), valve K opens; when the  signal is lifted (C=O), the  valveclo- 
ses. Thus we have  demonstrated how to  design  an  automatic-control  system 
by reasoning  in  terms of logic  elements. 

7. LOGIC ELEMENTS USING TUNNEL DIODES 

Recently, a new semiconductor  device  called  the t u n  n e 1 d i o  d  e  has 
been  developed.  Owing  to its simplicity,  high-speed  operation, and distinc- 
tive  current  -voltage  characteristics,  the  tunnel diode is being  increasingly 
used  in  amplifiers,  oscillators  and  logic  elements. 

The static current-voltage  characteristic of a tunnel  diode ( the  forward 
portion) is shown in  Figure  2.43.  The r e  v  e r s e  p o r t i o n  of the  charac - 
teristic  (the  dependence of the  current  passing  through  the  diode  on  the re- 
verse  voltage  applied  to  the  diode) is generally not used  in  logic  elements. 
Unlike  ordinary  semiconductor  diodes,  the  tunnel  diode  develops a very 
small   reverse   res is tance when a reverse  voltage  is  applied. 

three  specific  regions.  The first region  extends  from  the  origin  to  point A. 
In this  range  the static resistance of the diode  (the ratio of the  diode  voltage 
to  the  diode  current)  remains  fairly  constant,  increasing  slightly  near  the 
end of the  range  (see  Figure 2.44). The d y n a m i c   r e s i s t a n c e  of the 
diode,  defined a s  

The  forward  tunnel-diode  characteristic  (Figure 2.43) can  be  divided  into 

is also  constant at first  (Figure 2.451,  but increases  sharply  to  infinity at 
the end of the  first  region. 

ized by a decrease  in  the diode current  from i,,, (point A )  to imln (point B ) .  
The  static  resistance of the  diode  (Figure 2 . 4 4 )  increases  in  this  range, and 
the  dynamic  resistance  (Figure  2.45)  becomes  negative. 

In the  third  region of the  diode  characteristic  (Figure  2.43)  the  current 
increases  sharply with the  voltage  applied.  The  static  resistance  attains  its 
maximum  in  this  range and starts decreasing,  whereas  the  dynamic  resist- 
ance  (Figure  2.45)  is  again  positive. 

Figure  2.43  shows  that s t a t i c   c h a r a c t e r i s t i c  of a tunnel  diode 
which is obtained when the  voltage is varied  very  slowly. If the  diode  voltage 
is varied  more  rapidly, we obtain  the d y n a m i c   c u r r e n t   - v o l t a g e  
c h a r a c t e r i s t i c . It  differs  from  the static characterist ic in that it i s  af- 
fected by the  capacitance of the  diode.  Otherwise, it has  approximately  the 
same  form as the  static  curve shown in  Figure  2.43. 

tions  are  often  simplified by assuming  an i d e a l i z e d   c u r r e n t - v o l t a g e  
c h a r  a c t  e r i s t  i c of the  tunnel diode. This  characterist ic is shown  in 
Figure  2.46. 

The  second  region of the  tunnel-diode  curve  (Figure  2.43) is character-  

In the  mathematical  analysis of circuits  using  tunnel  diodes,  the  calcula- 
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FIGURE 2.43. Tunnel-dlode currenr-volrage characrerisrlc. 

R 

FIGURE 2.44. Static  resistance of a runnel  diode. 

Symbolically, a tunnel  diode is drawn  using  the  common  semiconductor 
diode  symbol  (Figure 2 .47)  enclosed in a circle.  
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FIGUKE 2.45. Dynamic  resistance of a  tunnel  diode. 

i 

K -  

I 

A 
- ud 

FIGURE 2. 46. Ideaked runnel-diode  characteristic. 

Let  us now consider  the  properties of a simple  circuit  (Figure 2 .48)  con- 
sisting of a tunnel  diode and a resistor  connected  in  series.  The  same  cur- 
rent  passes  through  the  diode and the  resistor.  Therefore,  adding  the diode 
voltage (ud) and the  voltage  drop  across  the  resistor (UR)  for  a given  current, 
we obtain  the  input  voltage of the  circuit (4,s). This  voltage is generally call- 
e d t h e   b i a s   v o l t a g e .  

The  current i of the  d  i o d  e- r e s i s t o  r circuit  plotted a s  a function 
of Ubs is shown  by the  dashed  curve  in  Figure 2.49. The  solid  lines  repre- 
sent  the  current  -voltage  characteristics of the  diode (u,) and the  resistor (+). 
From  the  characterist ic of the  circuit we see  that at first the  current  in- 
creases   to  i- with increasing  bias voltage (ubs). Beyond the  point A, the 
circuit  characteristic  reverses  itself  in  the  direction of decreasing  bias 
voltage.  The  bias  voltage,  however, is independent of the  current flowing 
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in  the  circuit.  Therefore, when voltage  increases at point Althe  current 
will  drop  abruptly  to  the  value  determined  by  point El. When f tb s  is further 
increased,  the  current  again  starts  increasing. When the  bias  voltage  drops 
to point B2, a  second  abrupt  change of current  occurs,  this  time  from  alower 
to  a  higher  value.  The  portion AlB2 is thus  unstable,  and  the  current-voltage 
characterist ic of the  diode-resistor  circuit  has  the  form  shown  in  Figure 
2. 50. The  portions AIS, and &A2 indicate  the  current  jumps which occur  at 
bias  voltages of ubs, and ubs,, respectively. 

I' 

FIGURE 2.41. Sym- FIGURE 2.48. A tunnel  diode 
bolic  drawing of a in  series  with a resistor. 
runnel  diode. 

In Figure 2 . 4 9  we plotted  the  characteristic of the  diode-resistor  circuit 
using  the  current-voltage  characteristics of the  diode  and  the  resistor.  The 
reverse  problem  can be solved  similarly:  the  characteristic of the  tunnel 
diode  operating  in  a  diode-resistor  circuit  can  be  constructed  from  the  char- 
acterist ics of the  circuit  and  the  resistor.  Given  several  values of current 
and  computing  the  diode  voltage  from  the  bias  voltage  (Figure 2 .50)  and  the 
voltage  drop  across  the  resistor  (Figure 2.49), we construct  the  curve  shown 
in  Figure 2.51: 

i=f(ud) = f ( U b s - U ~ ) -  

It  can  be  seen  from  this  curve  that when the  diode  voltage  increases  at  point 
CI the  diode  parameters  experience  an  abrupt  change.  Consequently when the 
diode  voltage  switches  from Ud,to rid2; the  current  drops  from  iclto 1 , .  When 
the  diode  voltage  decreases,  the  switching  occurs  at  point D2. Here  the  cur- 
rent  increases  from ia to i, and  the  diode  voltage  drops  from u4 to Ud,. 

cuit do not  always  experience  this  abrupt  change  when  the  bias  voltage is 
varied. When t h e  resistance R is small,  the  portion AIB2 in  Figure 2 . 4 9  
may  lose its inflection  toward  the  lower  values of ubs. In this   case,   as  ubs  in- 
increases,  the  current  varies  smoothly. 

The  number and  location of the  stable  points  on  the  current-voltage  char- 
acterist ic of a  diode  operating  (for  a  given u bs) in a diode  -resistor  circuit 
can be determined by two methods. 

of the  diode-resistor  circuit  from  the known characterist ics of the  diode 
a d  the  resistance  (Figure 2. 50). The  number of stable  points of the  circuit 
and the  currents at these  points  are  then  determined  from  this  characteris- 
tic for  the  given  bias  voltages (UbS). 

Note that  the  current and  voltage parameters of the  diode-resistor  cir- 

The first method  consists in plotting  the  current-voltage  characteristic 
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FIGURE 2.49. Construction of the  Characteristic of the diode-resistor 
circuit. 

For example, if the input  voltage of the  circuit  is &sK (Figure 2.50) the cir- 

cuit  has two stable  points (Kland &), with currents  i~ and imln,  respectively.  The 

current is iK if the  voltage Ubs has  increased  from a lower  value  to ubsK. If, how- 

ever,  the  voltage &sK has  been  reached  as ubs has  decreased,  the  current  is  

imln. When the  bias  voltage is I(bsE , there is but a single  stable point  in  the c i r -  

cuit, and the  current is ipregardless  of the  trend of u b s  before  reaching  this  point. 
I 

I l l  
1 1 1  

FIGURE 2.50. Working characteristic of the  diode-resistor  circuit. 

Having  determined  the  number of stable  points  and  the  currents at these 
points, we may  proceed  to  determine  the  stable  points of the  diode  operat- 
ing in  the  diode-resistance  circuit  (Figure 2. 51). Since  the  current  in  this 
circuit is equal  to  the  diode  current,  the  stable  points of the  diode  charac- 
teristic  can  be  determined  from  the  currents at the  stable  points of the  c i r -  
cuit. For  example, if  the  currents at the  stable  points  in Figure 2.50 are 
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iM and imr, then  the  stable  points of the  diode in Figure 2.51 a r e  El and Et .  

FIGURE 2. 51. Current-voltage  characrerlsric of a  runnel  diode 
operating in a diode-resistor  circuit. 

The  second  method of determining  the  stable  points on the  diode  charac- 
ter is t ic  is simpler.  From Figure 2.48,  the diode  voltage for a  given  bias 
voltage (ubs) is given by the  equation 

Ud pubs - Ri. 

On the  other hand, in Figure. 2.43, the diode  voltage as  a  function of the 
current i is defined  graphically: 

The  voltage  udis  thus  determined by two relationships.  The  intersection 
of the  straight  line u,j=i(bs, -Ri (for  a given ubs,) with the  curve u d = f ( i )  give 
the  operating  points of the  diode, 

plot  (Figure 2. 52)  the  current-voltage  characteristic of the  diode.  The  given 
bias  voltage (ubs,) is laid off the  abscissa. A straight  line is then  passed 

through  the point i=o; u=+,s, at an  angle of a= arc C t g  R .  This  gives  the  load  line 

ud Ri. This  line  intersects  the  diode  characteristic  at  points A, B, 
and c.  As previously shown,  point B in  the  second  region of the  diode  char- 
acterist ic is unstable.  Points A and C are  stable,  and from  these  points, 
the  corresponding  diode  currents and voltages  can be easily  determined. 

The  diode  is  switched  from one stable point to  another  in  the  following 
manner.  Let us assume  the diode is operating at point A ,  and the  bias 

The  operating  points of the diode can now be  determined  graphically. We 
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voltage ffbs, is   increased  by Au,. The  load  line u d  = U b s , + R i  is thus displaced 
parallel  to itself to  the  right  and now intersects  a  single  operating  point C1. 
If now the  voltage Aul is removed, both  points A and C can  be  operating  points. 
However,  since  the  diode  voltage  has  decreased,  the  diode  goes  to point c. 
When the  bias  voltage is decreased by Auz, the  only  operating  point is A!,  so 
that,  whenthe  voltage AUX is switched  off,  the  diode  operates  at  point A. 

FIGURE 2. 52. The  characteristic of a  bistable  diode- 
resistor circuit. 

When the 3.oad in  the  diode-resistor  circuit  decreases  (from R to RI),  the 
characterist ic of the  diode  (Figure 2. 5 3 )  may  have  a  single  stable point  only 
(in t h i s  case,  point A ) .  

Since  the  tunnel  diode  can  switch  from  one  state  to  another, it is suitable 
for  the  design of various  electronic  logic  elements.  These  elements  are  dis- 
tinguished  by  their  simple  circuitry  and  high-speed  operation  (the  switch- 
ing  time of tunnel  diodes is even  shorter  than  that of vacuum  tubes). 

Let us  now consider how tunnel  diodes  can be used  to  design  various lo- 
gic  elements. In the  circuit  shown  in Figure 2. 54, the  bias  voltage (ubS,) and 
the  resistor R are so chosen  that  the  tunnel  diode  operates  approximately  at 
point A (Figure 2. 52). in  the  immediate  vicinity of maximum.current. A still 
better  choice of Ubs, and R would ensure  this  maximum  current. A t  this  point, 
however,  any  slight  increase of voltage  can  lead  to  maloperation of the sys- 
tem.   The  res is tors  RI and R z  a r e  so chosen  that  the  voltage  across R, is 
equal  to  the  diode  voltage u,. In this  case,  the  output  voltage of the  circuit 
is 0. 
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FIGURE 2. 53. hlonostable  characteristics. FIGURE 2. 54. Tunnel-diode  switching  circuit. 

FIGURE 2. 55. Twin  circuit. 

If now a positive  voltage is applied to input A, which increases  the  diode 
voltage  to uc, the  diode  current  drops  abruptly  from i, to i,. When the input 
voltage is lifted,  the  diode D is cut off and the  tunnel  diode  continues  to op- 
erate   a t  point c .  To  sum up,  when a signal is applied  to  input A, an output 
signal is produced at C,  which persists  after  the input  signal  has  been  lifted. 
The  output  signal  can  be  cleared by  switching off the  supply  voltage  (push 
button r(). A s  #bs increases  after  switching  on  again,  the  tunnel  diode  again 
operates  at  point  A(Figure  2.52).  The  circuit  shown  in  Figure  2.54 is thus 
an  equivalent of the  self-holding  relay. 

to  input B .  To  reset  the  tunnel  diode,  the  voltage  across R (Figure 2. 52) 
must  be  equal  to ubs,- uA, since  in  this  case  the  diode  voltage is uA and A 

The  output  signal  can  also  be  cleared by applying  anegative  -voltage  pulse 
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is therefore  the  operating  point. When signal B is lifted,  the  tunnel  diode 
remains  at  point A and no output  signal is produced  (the  output is cleared 
to  zero). 

With  two  inputs ( A  and B ) ,  the  circuit  in  Figure  2.54 is equivalent  to  the 
bistable  circuit  in  Figure  2.25,  designed of four  logic  elements. 

The  t w i n  c i r c u i  t is another  logic  element  designed with  tunnel 
diodes  (Figure  2.55). In this  circuit two  diodes  and  two  equal  bias-voltage 
sources (&s) a r e  connected  in  series.  Let  the  twin  circuit  consist of two 
matched  diodes,  whose  current-voltage  characteristics  are shown in  Figure 
2.43. Given  the  diode  characteristics,  the  current-voltage  characteristics 
of all the  components  in  the  twin  circuit  can  be  plotted.  The  resistance of R 
is generally  much  higher  than  the  resistance of the  diodes.  Therefore, we 
can  neglect i in  comparison with  the  diode currents  ( il and i z )  and we may 
set i ,=O and rl=ir. Since now the  same  current flows  through  each  diode, 
the  current-voltage  characteristic of the  twin  circuit  can  be  constructed by 
summing  the  diode  voltages: 

4 

where ha, ud, = the  voltages  across  the  first and  the  second  diodes; 
2 ubs = the  bias  voltage  for  a  given  current. 

From  Figure 2.43, it  can  be  seen  that when  the current  l ies between  the 
values imu>i>i,,,,n, the  diode  may  have  three  different  voltages,  depending 
on whether  it  is  operating  in  region 1, 2, or  3. O n  the  same  current  range, 
these  voltages  give,  in a turn  circuit,  six  possible  combinations 1-1, 1-2 
1-3, 2-2, 2-3. and 3-3, i. e.,   there  are  six  different  voltage  values  to 
each  value of current  (Figure  2.56).  Where i<imIm or i>imax, the  voltage  can 
assume only  one  value  for  each  value of current.  

The  characterist ic of a  twin  circuit is shown  in  Figure  2.56. As pre- 
viously  explained,  this  curve  has  six  different  regions  for  currents  in  the 
imU>i>imln range.  Five of these  portions (1-1, 1-2, 1-3, 2-3, and 3-3) 
are  stable,  whereas  the  sixth (2-2) is unstable.  This w i l l  now be considered 
in  greater  detail.  

The  following  relationships  describe  a  twin  circuit  (Figure 2 .  55): 

(2.37) 

iR= i t  -il. (2.38) 

Let  the two diodes  operate  in  the  second  region of their  respective  char- 
acteristics.  Since  the  same  current  flows  through  the two diodes,  thediode 
voltages  are  equal.  The  voltage  across R is zero, so that iR= 0.  If,  however, 
some  random  change  in  the  tunnel-diode  parameters  or  in  the  bias  voltage 
U,bs produces  a  finite  current,  the  following  occurs. 

When i, appears,  the  volfage on the first diode  decreases (2.36) and 
the  voltage  on  the  second  diode  increases (2.37). Since  each  diode is 
operating  in  the  second  region of i ts   respective  characterist ic  (Figure 2.43), 
the  decrease  in  voltage on the first diode  produces  an  increase  in  current i l ,  
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and  the increase  in  voltage  on  the  second  diode  produces a decrease  in  cur- 
rent  it. On the  other  hand,  the  increase  in ir and the  decrease in i2 wi l l  in- 
crease  (2.38)  the  current iR. The  increase in iR, in its turn,  will  further 
decrease  the  voltage  on  the first diode and increase  the  voltage  on  the  sec- 
ond diode,  etc. We thus  have a cumulative  process which w i l l  t ransfer  the 
twin  circuit  from  region 2-2 to  one of the  stable  regions (1-2, 1-3, or 2-3). 

FLGIJRL 2. 56. Current-voltage  characteristics of two tunnel 
diodes  connected in series. 

Suppose that  in  Figure  2.56  the sum of the two bias  voltages  applied  to 
the  twin  circuit i s  equal  to us. Since  the  range 2-2 is unstable,  the  circuit 
w i l l  sett le at point P. This  point is obtained by adding  the  voltages  across 
the  diodes when the  current is equal  to imlrr. We shall  assume  that one  diode 
is  operating  at point B ,  and the  other  at  point c of Figure 2 . 4 3 .  The  sum 
of these  voltages  is  equal to up. The  value of 1 is assigned  to us, and the 
value of 0 to uc. 

Since  the  diode  characteristics  are  identical,  either diode  can  acquire 
voltage ugor  uc when the  bias  voltage i s  applied  to  the  circuit.  However, 
having  acquired  one of the  voltages,  the  diode w i l l  persist   in  i ts   state  in- 
definitely.  This  property of the  twin  circuit  can  be  utilized  in  various  logic 
elements. 

For  example,  Figure 2 .  57 shows a bistable  circuit  designed on the  prin- 
ciple of the  twin  circuit.  This  circuit  performs  the  same  logical  operations 
as that shown in  Figure  2.25. When input A is energized,  output C i s   se t   to  
1. In this  case  the  voltage on the  second  diode is ug and that on the  f irst  
diode i s  uc. The output remains  at  1 after  the  input A has  beende-energized. 
If now input B is  energized,  the  voltage on the  second  diode decreases  
sharply and that on the  first  diode  increases.  The output  voltage  drops  to 0 ;  
the  diode D preventing  reversal  in  its  polarity. 

The twin circuit  is  also  suitable  for  designing a static  self-holding s w i t c h  
This  switching  circuit is shown  in  Figure 2. 58. If a voltage i s  applied  to  the 
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input ( A )  of this  switch, output C is set   to 1 (voltage UB, Figure  2.43)  and 
output B is cleared  to 0 (voltage uc). When push  button K is pressed,  the 
voltage on the  second  diode  drops  sharply, and  that  on  the first  diode  in- 
creases.   The 1 is thus  transferred  from  output c to output 8 .  When input A 
is again  energized,  output c i s   r e se t   t o  1.  In t e rms  of logical  operations, 
this circuit  is  analogous  to  those shown  in  Figure  2.40. 

D 
+ 

F I G U R E  2. 51. Schematic  diagram of runnel-diode  blstable 
circuit. 

Note that when the  bias  voltage u b s  is first applied  to  the  circuit  in 
Figure 2. 58, we cannot state a pr ior i  which of the  outputs wil l  be  set  to 1. 
To eliminate  this  ambiguity we must  press push  button K. This  will  set 
output B to 1 and clear output C to 0. 

A *- R 

ff bs 

bs 

FlGURE 2. 58. Static  switching  circuit. FIGUP.€ 2.59. Tunnel-diode  one-bit  adder. 

The  tunnel  diode  can  be  used  in a very  simple  circuit  (Figure 2 .59)  a s  a 
one-digit  binary  adder for three  numbers (two addends  and car ry   f rom a 
lower  position).  This  circuit  functions  as  follows. 

puts (A, B, orc)  is energized  the  tunnel-diode  voltage is &,, (Figure  2.60). 
The  res is tors  R and f a r e  so chosen  that when only  one of the  circuit  in- 
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In  this  case the diode  operates at point F, transmitting  current ib. 
When  two  equal  voltages are impressed at any  two  inputs,  the  diode  volt- 

age  increases and its operating  point  shifts  to G, and the  current  decreases 
to ia . If all three  inputs are energized,  the  diode  voltage  increases  further 
and the diode current  rises again  to ib (point H). 

rent  passing  through r is then  equal  to the diode current  (id). The  voltage 
across  r is therefore  equal  to 

Let us  assume  that  the  output  currents  (Dand E )  are  negligible,  The  cur- 

u,=&d r. 

Hence,  since r =  constant,  the  output  voltage E is proportional  to  the  tunnel- 
diode current  ( i d ) .  If the  voltage id is now coded a s  1, and i,r a s  0, the  output 
E is set   to 1 when (Figure  2.60)  one  input or three  inputs  are  energized. Re- 
ferr ing to Figure  2.12, it can be seen  that when output E is set  to 1, i t   re -  
presents  the  sum  signal. 

Let now the  voltage udF represent  signal 0 ,  and the  voltages udG and UdH 

signal  1. Output D is then  set  to 1  when two or  three  inputs  are  energized. 
Hence  (Figure  2.12), when output D is set ,   i t   represents  the  carry  signal.  

the  adder  circuit  (Figure 2 .  59): 
We  now calculate  the  resistors R and r .  The  following  equations  describe 

(2.39) 

where u =  the  voltage  applied  to  one or several  inputs of the  circuit; 
i l ,  Udr= the  current and the  voltage of the  tunnel  diode when voltage u 

iz, udo = the  current and  voltage when any  two  inputs are energized; 
i s ,  udH' the  current and voltage when all  three  inputs  are  energized. 
Seeing  that  at  points F and H (Figurc  2.60) 

is applied  to  one of the  circuit  inputs; 

il = i2=  ib, 

w e  derive  from  (2.39) and  (2.41) 

(2.42 

Therefore,  reading  the  voltages Ud,, and #d off the  tunnel-diode  charac- 
H 

teristic (Figure 2. 60), we may  determine  the  resistance R .  
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Inserting R from (2.42) into (2.40) and  remembering  that i2=ia we 
have 

(2.43) 

Given  the  parameters u ,  uQ and I , ,  we derive  from (2.43) the un- 
known resistance r .  

The  twin  circuit  can  also  be  used  to  design AND, OR, and NOT gates. 
These  are,  however,  rather  complicated  and  are  employed  only when  excep- 
tionally  high-speed  switching is required. 

FIGURE 2. 60. Operating  points of a  tunnel  diode. 

8. LOGICAL  OPERATIONS WITH  ANALOG QUANTITIES 

Electronic  logic  elements  are  widely  used not only in digital  circuits 
which transmit  discrete  signals, but also  to  process  information  transmitted 
by continuously  varying  signals  (analog  quantities), In  the  latter  case  the 
logic  element  must  choose not between  two  values 1 and 0, but ra ther  be- 
tween  an  infinite  number of values of a  smoothly  varying  signal.  Therefore, 
the  requirements of these  logic  elements  are  far  more  stringent  as  regards 
accuracy  and  stability. 

Before  discussing  some  examples of the  application of electronic  logic 
elements, we shall first consider  an  important  property of the OR gate, 
when  a  continuous  voltage is applied  to its  inputs. 

In Figure 2 .61 ,  three  continous  voltages ul, u2, and u3 a r e  applied  simul- 
taneously  to  the  input of an OR gate. At a  given  instant, u1 is greater than 
Uz and us. Voltage u1 causes  a  current il to flow through ip, producing  across 
it a  voltage  drop uR =Ri l=u l .  Since UI is greater  than up and us, diodes 2 and 
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3 are   cut  off and  no current  flows  in  them.  Current f lows  only  through  the 
diode to which the  highest  voltage is applied. If signal  lights are connected 
to  the  circuits of the  three  diodes  only  the  light  in  branch 3 w i l l  be ener- 
gized.  The  resistance of the  signal  lights  should be one or two  orders  of mag- 
nitude  less  than  the  resistance of R .  Otherwise,  the  lights w i l l  introduce 
considerable  distortion in the  circuit s operation. 

FIGURE 2. 61. Determination of maximum FIGURE 2.62.  Comparator circuit for two volr- 
voltage hy means of an OK gate.  ages. 

Therefore,  the  voltage at the output of the OR circuit (D) is equal  to  the high - 
est  of the  voltages  applied  to  the  input.  The OR circuit   thus  selects the high- 
es t  of several  input  voltages,  measures  it, and indicates  the  branch  to which 
this  voltage  is  applied. 

Let u s  now consider a two-input OR circuit  (Figure 2 . 6 2 ) .  A reference 
voltage uref is applied  to  input A, and a variable  voltage u is  applied  to in- 
put B .  Current  passes  through rl only if  the  measured  voltage  is  less  than 
the  reference  voltage.  Consequently, a signal  appears  at  output C only when 
u < u , , ~ .  Similarly, a signal is produced  at output D only  when u>uref. This 
circuit  thus  compares a given  continuous  voltage  with a reference  voltage. 

Some  examples  in  the  application of logic  in  continuous  current  circuits 
w i l l  now be considered. 

a )  Determination of the  largest  current  from  three  motors  connected 
in  parallel 

Equal  resistors  are  introduced  into the armature  c i rcui t  of each  motor 
(Figure 2.63).  The  voltages  across  these  resistors  are  proportional  to  the 
motor  currents.  These  three resistances are coupledto anOR circuit. A 
voltmeter  provided  at  the  output of this  circuit w i l l  therefore  measure  the 
highest  input  voltage. If the  voltmeter is graduated  in  amperes,  it w i l l  give 
the  largest  current. A signal  light w i l l  indicate  the  circuit  whose  current 
is being measured  at  the  moment. 
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FIGURE 2.63. Circuit for measuring  the largest current of 
three motors. 

b) Automatic  starting of a d-c  motor 

Consider  the  circuit  in  Figure  2.64  where a d-c  motor  is   started by the 
successive  shorting of two resistors  connected  in  the  armature  circuit. 
When contact 1 is  made,  maximum  armature  current  flows (point a ,  Figure 
2.65). A s  the  speed of the  motor  increases,  this  current  decreases  andwhen 
it drops  to i dm(point b )  contact 2 is made  and  the  current  jumps  to  point c; 
when the  current  again  drops  to imlm (point d ) ,  contact 3, is made. 

P 
FIGURE 2.64. Motor-starting circuit. 
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Contact 1 is made by an  externally  supplied  signal.  Contacts  2 and 3 a r e  

a )  if contact 1 is made and i <jrnl,,, make  contact  2; 
b) if the  motor  voltage  reaches urn*,, as  the  motor  speeds up and i<i,,,,, 

c )  if contact 1 is broken,  break  contacts 2 and 3. 
The  last  condition is essential for resetting  the  circuit for the  next s t a r t -  

made  according  to  the  following  logical  specifications: 

make  contact 3; 

ing of the  motor. 

L l m  a 

FIGURE 2.65. Diagram of starting currents. 

The  logic  system  fulfilling  these  specifications is shown  in  Figure 2.66. 
The  system  has  four  inputs.  Input A receives  the  signal which makes  contact 
1 in  Figure 2 .64 .  A voltage u which is proportional  to  the  armature  current 
is applied  to  input B of a current  comparator  designed  according  to  the cir-  
cuit  shown  in  Figure 2.62.  The  reference  voltage (yef) is applied  to input c, 
a.nd the  motor  voltage (u,) to  input D. The OR 1 gate  produces  an  output 
signal when the  motor  current  drops  to i<imb . The ORz gate  acting a s  a 
comparator  produces  an  output  signal when the  voltage of the  motor  speed- 
ing  up  exceeds urn,.. 

The  system  operates  as follows; when contact 1 is made, input A is set  
to 1. When the  motor  current  decreases  to Imlnr the  output of the OR1 gate 
is also  set   to 1. The AND1 gate now produces  an  output  signal which makes 
contact 2 (Figure  2.64). When contact 2 is made,  the  motor  current  increas- 
es  abruptly and then starts  decreasing.  The  motor  voltage  continues  to  in- 
c r ease  and  when inequalities i<imln and um>umia are  satisfied,   the OR, gate 
is set   to 1 and  contact 3 is  made. 

s w .  1 A 
E sw.2 

FIGURE 2.66. Logic system for motor  starting. 
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When contact 1 is broken,  the  coils of contacts  2 and 3 and  the  system in 
Figure 2.66 are de-energized,  and  the circuit of Figure  2.64 is rese t   for  
further  operation. 

c )  A two-mode  automatic  regulator  for  battery  charging 

One of the  optimum  methods of battery  charging is to  charge  the  battery 
with a constant  current  while  the  battery  voltage  gradually  increases  to its 
maximum  value,  and  then  to  switch  over  to  constant-voltage  charging  (Fig- 
ure  2.67). 

p 

i b = a m t  ~ , . C r n t  

FIGURE 2.67 .  A battery-charging  circuit and 
charging  characteristics. 

This  switching  can  be  performed by  a  simple  circuit  consisting of two 
gates (Figure 2.68).  The  circuit  has  two  inputs,  one  energized by the  bat- 
tery  voltage (Ub) and  the  other by  a  reference  voltage (u,,~). When the  battery 
voltage r i ses   to  its maximum  value,  the  comparator  produces  a  signal (C) 
which switches  the  regulator  overto  the  constant-voltage  mode.  The  signal (D) 
which switches  the  regulator  over  to  the  constant-current  mode is simul- 
taneously  cleared. 

FIGURE 2. 68. Logic system for switching  charging  modes. 
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9. MATHEMATICAL  OPERATIONS WITH ANALOG VOLTAGES 

Most  analog  computer  circuits  employ  electronic  amplifiers.  These  ampli- 
fiers  mostlyuse  transistors  ortriodes  (Figure  2.69).  The  symbol  for an ampli- 
f i e r  is a  rectangle with an  arrow  pointing  in  the  direction of amplification 
(Figure 2.70). These  amplifiers  amplify  the  input  voltage u by a  factor of 
k and simultaneously (Figure 2.69)  change  its  sign. 

- 

8 

-#,llI.*---- + 

FIGURE 2. 69. Transistor and triode  amplifiers. 

Computer  circuits  often  require  very high (1@ and higher)gain, and to  ac - 
complish  this,  several ( generally  three)  amplifiers  are  connected  in  series. 
In this  case,  an  amplifier  stage is also  represented by a  rectangle,  as  shown 
in  Figure 2. 70. 

FIGURE 2.70. Symbolic  repre- 
sentation of an  amplifier. 

Let  us  consider how various  operations  with  analog  voltages  are  perform- 
ed. 

a )  Operational  amplifiers 

To  achieve  the  highest  accuracy  in  a  computing  circuit,  the  maximum 
value of the  signal  voltages  should be as  close  as  possible  to  the  nominal 
voltage of the  circuit.  The  maximum  voltage  values  encountered  in  practice, 
however,  may  assume  arbitrary  values.  The  amplifiers  in  Figure 2 . 6 9  a re  
inadequate  for  adapting  these  voltages,  since  they  have  a  constant  gain  factor. 

. . .  .. . 



Consequently,  computing  circuits  often  make  use of o p  e r a t  i o n a 1  a  m - 
p 1 i f  i e r s in which the  gain  may  be  easily  and  smoothly  regulated.  The 
block  diagram of an  operational  amplifier is shown  in  Figure 2. 71. We shall 
now determine  the  gain of this  amplifier. 

Since  the  current io (grid  current  in  atube or base  current  in  a  transis - 
t o r )  is many  times  smaller  than  the  currents il and i ,  we shall  neglect  it, 
setting io=O. We therefore  have  the  following  relationships  for  the  circuit 
in  Figure  2.71: 

where & is  the  amplifier  gain: 

a t D 

FIGURE 2.71. Block diagram of an operational 
amplifier. 

Solving  the  simultaneous  equations  (2.44), we derive 

A s  stated  previously,  the  amplifier  gain (&) is generally  very high. There-  
fore,  setting (&=-), we obtain 
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Thus,  the gain of the  operational  amplifier  can  be  regulated  by  varying 
R o r  R I .  

b)  Summing of voltages 

Consider  the  circuit in Figure 2 .72 .  A s  before, we take io=o. Therefore,  

4 
FIGURE 2.72. The summing amplifier. 

Solving these  simultaneous  equations, we derive 
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or 

whence 

n 

Setting k = w ,  we obtain 

If now R=RI=R2= . . . -R, ,  , then 

( 2 . 4 6 )  

The  circuit in Figure 2 . 7 2  thus  sums  any  given  number of voltages, and 
is called a s u m m i n g   a m p l i f i e r .  

- *  . 
Invertor  Summer 

FIGURE 2.73. Block-diagram for volrage subtraction. 
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c )  Subtraction of voltages 

Subtraction is readily  reducible  to  addition: 

urul==-ruI+(-1(2)1 

The  diminued ~ 2 ,  is applied  to  an  operational  amplifier with a  gain of 1 
(Rl=f?) (Figure 2. 73). This  amplifier  inverts  the  sign of u2, which is then 
fed  into a summer  together with the  subtrahend  voltage. 

d )  Voltage  integration 

Voltage  integration is performed by the  circuit shown in Figure 2 .  74. - 
FLGURE 2.74. Voltage integrator. 

Neglecting io, w e  have for this circuit 

Solving these  equations, we obtain 

Setting &=-, we have 

U i"dt. (2.48) 
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Integration is often  performed  with  nonzero  initial  conditions.  Special 
circuits  must  be  provided in integrators  to  set  these  conditions.  This  setting 
is carried  out by charging a capacitor  to  the  voltage  specified.  The  capaci- 
tor,   as  a  rule,   must not be  disconnected  from  the  integrator  feedback cir- 
cuit,  since  the  open  feedback loop would result  in  instability  and  in  error 
of solution.  The  capacitor is charged  from  an  external  source (u,) a s  shown 
in  Figure 2.75. The  upper  position of the  switch  in  the  circuit  corresponds 
to  the  initial  condition  mode, and the  lower  position  to  the  operate  mode of 
the  circuit. 

"out 

FIGURE 2.75. Initial  condition and operate circuit for an 
integrator amplifier. 

e )  Voltage  differentiation 

Voltage is  differentiated by  the  circuit  in  Figure 2. 76. In this  circuit, 

i-= "il; 

io=O, 

Rout = -h** 

Solving these  equations  simultaneously, we obtain 
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Setting &=w, we obtain 

o r  

du in+ A, "CR, (2.49) 

where A is the  integration  constant  specified  by  additional  conditions. 

R 

FIGURE 2.76. Voltage  differentiator. 

Differentiation,  unlike  integration,  has  the  following  serious  shortcom - 

a) the  differentiator  (Figure 2.76) amplifies  the  high-frequency  noise, 

b)  the  increased  sensitivity of the  circuit  to  high-frequency  harmonics 

Consequently,  differentiation is performed  only  in  extreme  cases.  When- 

ings : 

thus  increasing  the  error of differentiation; 

may  induce  high-frequency  oscillations  in  the  circuit. 

ever  possible,  the  order of the  differential  equation  must  be  lowered  with- 
out resorting  to  differentiation. 

For  example, find  the  current  in  the  equation 

u=iR+L - dl 
dt ' 

where R and L are  constants. 
Integrating  the  two  sides of the  equation,  gives 

1 U d t - R  / i d t + L i + A .  

where A is the  constant of integration. 

the  solution of these  equations will be iilustrated  at  the  end of the  chapter). 
Here we have  substituted  integration  for  differentiation  (the  technique  for 
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f )  Coefficient  -variation  uits 

C o e f f i c i e n t - v a r i a t i o n   u n i t s  are used when some  coefficients  in 
the  equations  must  vary  with  time  during  computation. 

A coefficient-variation  unit  using  a  programmed  switch  selects  at  de- 
finite time  intervals ( A t )  consecutive  positions  which  connect  different  volt- 
ages  (Figure 2.77). These  voltages are chosen so  as to  ensure a satisfac- 
tory  approximation of the  given  time-variation  curve of the  coefficient 
(the  dashed  curve  in  Figure 2.77). 

4 
- 4 t  i- 

FIGURE 2.77. Voltages  set up by the  coefficient-variation 
unit. 

g)  Nonlinear  function  generators 

N o n l i n e a r   f u n c t i o n   g e n e r a t o r s   a r e  used when a nonlinear 
function u o u t = f ( u i n ) ,  defined  graphically, is involved  in  the  computations. 
In drder  to  generate  the  nonlinear  function, it must  be  approximated  by 
straight  segments  (Figure 2. 78) and the  breakpoints 42,  a3 ... and bl, bs, b3 ... 
must  be  determined. 

The  simplest  function  generator is shown in  Figure 2. 79. It  consists of 
several  circuits,  each  corresponding  to a definite  segment of the  approxi- 
mated  function.  For  example, the circuit with the  resistor RI  corresponds 
to  segment ( I )  of the  function  (Figure 2.  78); the  circuit with Rz and e2 to  seg- 
ment ( I I ) ,  etc.  The  switching  from  one  circuit  to  another  is  achieved  by  a 
switch  operated by the  input  voltage: if uin<uin, (Figure 2.78), the  switch 

is in  the first position; when ui5a> #tin > U. the  switch  connects  the 

second  circuit, etc. 

- 
q-2'  

We shall now determine  the  circuit  parameters of this  function  generator. 
.For the  n-th  position of the  switch  (Figure 2.79). we have 
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0; t 
FIGURE 2 . 1 8 .  Piecewise  linear  approximation of a  function. 

Solving  these  simultaneous  equations  gives 

(2. 50) 

On  the  other  hand, for the  n-th  segment of the  piecewise  approximation 
(Figure 2. 78), 

uout=-a, +b,uin. (2. 51) 

Solving (2. 50)  and (2. 51)  simultaneous’ , we obtain 

The  parameters of the  n-th  circuit of the  nonlinear  unit are  thus  deter-  
mined by the  relationships 

(2.53) 
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FIGURE 2.79. A simple  function  generator. 

The  resistance of r is arbitrary,  but it  must  be  much  smaller  than  the 

This  function  generator  has a switch  actuated by the input  voltage.  This 
resistance of &, R 2  ... 
switch  can  be  replaced by diodes.  For  example,  Figure 2.80 shows a unit 
consisting of three  resistance  circuits, R,. R 2 .  and RJ. Such a unit  can  be 
designed  for  any  number of circuits.  The  number of these  circuits is deter-  
mined by the  number of segments in the  piecewise  linear  approximation 
(Figure 2 .  78). 

T 
FIGURE 2.80 .  Static  function  generator. 

The  circuit shown in  Figure 2.80 functions as follows. If the input volt- 
age  is  relatively  small ( u ~ ~ Q u ~ ~ , ~ ~  Figure 2.78), the  emf sources  (e2 and 

e3) cut off the  corresponding  diodes and current  flows  only  through R1. When 
the  voltage uin is greater  than u ~ ~ , - ~ ,  diode 1 conducts and current now flows 

through  two  circuits  (Rland R 2 ) .  When the  voltage  rises  to ui”2-a, diode 2 

conducts  and  current  passes  through all the  three  circuits. 

follows. 
The  circuit   parameters of this  function  generator are determined as 
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When uin  Qui,  
1-2 .a 

u i n = R l i l + u o u t ;  

Uout  "n'l. 

Hence 

The  resistor r is  taken so  small  as to  be  negligible  in  comparison with 
the  other  resistors R , ,  &, and Ra. Then 

It can  be  seen  from  Figure 2. 78 that  for  the  first  portion 

uout =blUin - 
We therefore  have  from  the  last two equations 

(2.54) 

(2.55) 

If uinSS >/ uin>~inl-a,  the  voltages  inthe  function  generator  are  given by the 

following  equations ( f is neglected  in  comparison with the  other  resistances ): 

uin = R h ;  

uin=e2+Rai2; 

uout = (it+h)r. 

Solving these  equations  simultaneously,  gives 

The  second  segment of the  piecewise  curve  in  Figure  2.78 is defined by 
the  equation 
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Equating  the  right-hand  sides of the last two  equations  term  by  term 
gives  the  parameters 

Solving  these  equations  simultaneously  with (2. 55), gives 

en= - 9 
bz-bl ' (2.57) 

From  these  equations it can  be  seen  that  it   is  essential, when approxima- 

We have  previously  said  that  diode 1 (Figure  2.80)  conducts when 
ting,  that 62>6l. This  condition  in  Figure 2. 78 is always  satisfied. 

Uin 

The  following  equality  must  therefore be satisfied (the resistance of r is 
neglected): 

4 '=&nl4-  (2.59) 

We shall  verify  this  equality  using  the  parameters  given by (2 .  55), 

It follows from (2. 59)  that 
(2. 57), and (2. 59). 

U o u t u = b 1 U i n l _ t s  

where u ~ ~ ~ ~ - ~  is the  output  voltage  corresponding  to  input  voltage u. l"1-2 - 
On  the  other  hand,  from (2. 56), 

Eliminating u ~ ~ ~ ~ - ~  from  these  two  equations  gives  the  input  voltage 

89 



Condition (2. 59) is  thus  satisfied. 

larly.  Since  the  resistance r is  taken  very  small,  the  output  voltage  from 
the  function  generator is not  high,  and  can  be  fed  directly  to  an  amplifier. 

The  parameters of the  third  circuit  (Figure  2.80)  are  determined  simi- 

h )  Multiplication of two  voltages 

Multiplication is reduced to addition  and  squaring.  This  reduction is 
based on the  equality 

(ul+u2)2-(u1-~2)2=4u~u2. (2.60) 

To  prove  the  validity of this  equality, it suffices  to  expand  the  parentheses 
in the  left-hand  side. 

A circuit  for  multiplying two  voltages ( U I  and 112) is shown  in  Figure  2.81 
and  functions a s  follows. 

Amplifier 2 adds  the  voltages  (ul+u2)and  inverts  the  sign of the  sum. 
Amplifier 1 inverts  the  sign of voltage u2 ; the  output of amplifier 3 is there - 
fore  the  difference (u,-u2) with  opposite  sign.  The  two  function  generators 
give a piecewise  linear  approximation of the  quadratic  function u , , ~ = u ~ ~ ~ .  
The  outputs of these  generators  are,  respectively,  the  square of the  sum 
and  the  square of the  difference of the  two  voltages.  Amplifier 4 changes 
the  sign of the  square of the  difference,  and  amplifier  5  adds [ ( u , + u ~ ) ~ ] +  
+[- ( U , - U ~ ) ~ ]  and scales  the  sum  (reducing it to  1/4), so that its output  (see 
equation (2. 60) ) is the  product of the two voltages. 

UZ 

FIGURE 2.81 .  Circuit  for  multiplication of two voltages [ quarter square 
multiplier 3. 
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i) Division of two  voltages 

The  division of two  voltages is reduced  to  multiplication: 

The  factor - is generated by a function  generator  programmed  to  ap- 1 
pr, 

proximate  the  function 

In conclusion  let  us  consider  as  an  example  the  computation of the  cur- 
rent  curve i=f(f), when the  switch  in  the  circuit of Figure 2.82 is closed. 
To simplify  the  discussion, we shall  assume  zero  initial  conditions. 

The  circuit is described by the  equation 

where w = the  number of windings in  the  coil; 

B = the  flux  density  in  the  coil. 
Sc = the  cross-sectional  area of the  coil; 

FIGURE 2.82 .  A nonlinear  circuit  consisting of a resistor and a coil. 

The  flux  density  in  the  coil is a  nonlinear  function of the  coil  current, 
and is graphically  represented  in  Figure 2.82. 

An initial examination of (2.61) seems  to  indicate  that  differentiation 
is involved. W e  have  explained,  however,  that  differentiation  should  be 
avoided as far as possible owing to  the  considerable  errors  inherent  in  this 
operation. We shall  try  to  determine  the  current without  differentiation. 
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We therefore  rewrite  (2.61)  in  the  form: 

dB U -  Ri 
" 

df - wS, -10-8 

Set 

Equation  (2.62)  takes  on  the  simple  form: 

dB - = k l u  - k2i .  dt 

(2.62) 

(2. 63) 

The  block  diagram  for  the  solution of this  equation is shown i n  Figure 
2.83. The  corresponding  circuit is designed  as  follows. 

Lnpur 

FIGURE 2.83. Block diagram for current  computation. 

We see  from  (2.63)  that - 1s equal  to  the  difference of the  voltage (Z) ' 
and the  current in the  circuit,  each  multiplied by a  corresponding  coeffi- 
cient or, in  other  words,  each  taken  to a different  scale. We tentatively 
assume  that  the  voltage u and the  current i a re  known (the  voltage is indeed 
known, but the  current  is to  be  determined). 
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We then  feed  the "known'' current  (more  precisely, a voltage  proportion- 
al  to  this  current)  to  amplifier 1, which reverses  the  sign of the  current. 
The  inputs  to  amplifier 2 a r e  the  voltage u and  the  current with a  minus 
sign, -i . Amplifier 2 therefore  subtracts  the  current  from  the  voltage. A 
suitable  choice of resistors  at   the input of this  amplifier  scales  the  voltage 
and  the  current  as  required  before  subtraction.  Hence,  the  output of am-  
plifier 2 is a voltage (u=klu"k2i) which, according  to (2.63), is equal  to  the 

derivative - . Feeding  the  derivative  into  the  integrator ( 3 )  we obtain  the 

flux  density B .  The  flux  density B is then  fed  into  the  function  generator 
which is programmed to approximate  the  graphical  function i = q (  - B ) .  The 
output of the  integrator  therefore  gives  the  current i . This  current is then 
fed  to  the  input of amplifier 1. 

When voltage u is applied  to  the  input of the  circuit, its output  gives  the 
required  curve i=f(f). 

It  follows  from  the  preceding  example  that  individual  operations  are  re- 
duced to  the  design of an  electronic  model  (analog) of the  electrical  circuit 
in  question.  The  computations  carried  out  using  these  elements  are  there- 
f o r e   c a l l e d   a n a l o g   c o m p u t a t i o n s .  

(2) 
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Chapter 111 

INTRODUCTION  TO  THE  THEORY OF PROBABILITY  AND  ELEMENTS 
OF INFORMATION  THEORY 

1. FUNDAMENTALS OF THE THEORY OF PROBABILITY 

The  behavior of any  system  subject  to  arbitrary  external  effects is de- 
termined by the  laws  governing  the  system.  These  laws,  however,  espe- 
cially  in  cybernetic  systems,  are so  complicated  that  their  formulation  in 
t e r m s  of differential  equations is either  impossible or  impracticable.  In 
this  case  i t  would be  convenient  to  consider  the  behavior of the  system  as 
a r a n d o m   p r o c e s s ,   w h i c h c a n b e  analyzed b y t h e   t h e o r y   o f   p r o -  
b a b i l i t y .   T h i s   t h e o r y   d e a l s  with  functions of a r a n d o m   v a r i a b l e  
(0 r a v  a r i a t  e ) - a  quantity  which  may  assume  one of many  different 
values  without  giving  any  a  priori  indication as to  exactly which of these 
values it will  actually  assume. If these  values  form a continuous  function, 
the random  variable is said  to be c o n t i n u o u s .  A d i s c r e t e   r a n d o m  
v  a r i a  b 1 e ,  on  the  contrary,  can  take  on  only a finite number of values. 

e v e n t ,  which may or may not occur  during  the  period of observation. 

batteries  connected  together  at  random.  The  random  variable  (voltage)  may 
take on the  values of 2, 4, o r  6 v.  Any of these  voltages,  say 6 v, can  be 
considered as a r a n d o m   e v e n t .  

The  p r o b  a b i 1 i t  y of a random  event is considered  as  a  quantative  es - 
timate of its occurrence. 

Probability  theory  does  not  enable  us  to  predict  the  occurrence of an 
individual  random  event.  If,  however,  after  having  made  repeated  measure- 
ments we can  establish  the  behavior of the  random  variable  in  question, it 
is possible  to  determine  the  probability of occurrence of a random  event. 

E x a m  p 1 e .  A locomotive  leaves  Riga on its way to  the  seashore.  It 
is required  to  determine  the  distance it will  cover  (nonstop)  consuming k 
kwhr of power. 

This  distance  depends on the  engineer's  control,  the  voltage  on  the  line, 
on  the  number of passengers,  etc.  It is therefore  impossible  to  determine 
the  distance  for  the  locomotive  on its first  journey.  The  distance is a  ran- 
dom  variable.  However, if  the  distance  covered  by  the  train is recorded on 
every  trip,  the  probability  that  the  train  covers a preset  distance  consuming 
k kwhr can be  determined . 

The  probability of a random  event  can  be  determined  either by  studying 

Any of the  values of a  random  variable  can  be  considered  as  a r a n   d o  m 

E x a m p  1 e . Consider  the  voltage output from  one,  two, or three 2 -volt 
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the  behavior of the  event  in  question, o r  by processing  data  obtained  in a 
series of experiments.  Let us consider  these  possibilities  in  application 
to  elementary  examples. 

A die is thrown on a horizontal  plane. A f t e r  a throw,  the  die will land 
with  one of six  numbers  facing  upward. Which face is upmost  depends  on 
the  force of throw,  the  torque  imparted  to  the  die,  and  other  factors  which 
cannot  be  accounted  for  in  advance.  The  landing of the  die  with  any  given 
number  facing  upward is therefore a random  event. 

of the  die is homogeneous  and its shape is regular  (unbiased  dice),  the  ap- 
pearance of each of the  six  numbers is equiprobable.  Therefore,  setting 
the  probability of a throw  as 1, the  probability of appearance of any  pre- 
determined  number,  say 3, is 

The  probability of this  event  can  be  determined as follows. If the  mass  

1 
6 '  Pa" - 

Continuous  observation of a  random  event  can  closely  determine its pro- 
bability. F o r  example, in N tests,  the  event  in  question  occurred  n  times. 
Taking  the  ratio 

we obtain a parameter  called  the r e  1 a t  i v e f r e q u e  n c y of the  event. 
The  importance of this  parameter is signified by the 1 a w of 1 a r g e 

n u  m  b  e r s . This  law  states  that  in a sufficiently  large  number of measure - 
ments,  the  relative  frequency of an  event  may  be  arbitrarily  close  to its 
probability  (the  proof is omitted).  The  probability of an  event  can  thus  be 
determined  as  the  ratio of occurrences  (n)to  the  number of tes ts  (N), pro-  
vided  sufficient  tests  have  been  made. 

For  example,  out of 55 measurements,  the  current  amplitude  dropped 
during a predetermined  interval  (from 1.2, a)  37times.  Determine  the 
probability of a  random  measurement  giving  a  current  value  in  this  interval. 

In this  example N=55, and n=37. The  probability of the  random  event 
is therefore 

37 
55 (Q3.+,.+, = - "0.67. 

The  probability  that  an  event  m u s t  occur is taken as 1: 

P= 1. 

F o r  example, when a die is thrown,  one of the  six  numbers  must  face  up- 
ward.  The  probability of an  event  that  definitely  will not occur is 0. There-  
fore,  the  probability of a random  event  always  falls  in  the  range 

1 ,P> 0. (3.2 1 
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We shall now consider  a  method  for  the  determination of probabilities 
f o r  compound  events. 

a) Probability of disjoint  events 

Events A and Bare   s a id   t o  be d i s j o i n t  (or m u t u a l l y   e x c l u s i v e )  
if they  cannot  occur  simultaneously. For example, when a  die is tossed, two 
numbers  cannot  appear  simultaneously  on its upward  face. 

The  probability of mutually  exclusive  events is equal  to  the  sum of the 
probabilities of each  event. For two  events  this is expressed by 

P ( A  v B )  = P ( A )  + P ( B )  (3.3) 

("the  probability  that  either  event A or event B occurs is equal  to  the  sum 
of the  probabilities of events A and B ' I ) .  The proof of 'this  equality  follows 
from  the  definition of mutually  exclusive  events. 

Since  the  logical OR is equivalent  to  logical  addition, (3. 3)  can  be  writ- 
ten: 

P ( A + B )  = P ( A )  + P ( B ) .  (3.3a) 

For  example, when a  die is thrown  the  outcome of 1 and 3 are  mutually 
exclusive  events,  since  these  numbers  cannot  occur  simultaneously.  The 
probability of either 1 or 3  occurring when a  die is tossed is thus  equal  to 

P1+5=P1+P3=- + - - -. 1 1 1  
6 6 - 3  

The  probability of an  event of whose outcome we are   cer ta in  is s e t   a s  1. 
The  sum of probabilities of all  the  possible  mutually  exclusive  events  con- 
stituting a random  variable is thus  also  equal  to  one: 

P1+4+.-.+P,==1, (3.4) 

where PI  = the  probability of the first event; 
P2 = the  probability of the  second  event; 

P,  = the  probability of the  m-th  event. 
......................... 

Since  mutually  exclusive  events  cannot  occur  simultaneously,  the  pro- 
bability of the  simultaneous  occurrence ( A  and E )  of two  mutually  exclusive 
events is therefore zero: 

P ( A  A E )  -0; 

o r  

P ( A B )  =O. 

(3.5) 
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b)  Probability of joint  events 

J o i n  t e v e n t  s are events  which  may (though  need  not)  occur  simul- 
taneously 

For example,  pick  at  random  a  chess  piece.  Consider two  events: A- a 
white  piece is chosen; B -  a  bishop is chosen.  Since we may  conceivably  pick 
out a white  bishop,  the  two  events  may  occur  simultaneously, i. e., they are 
joint.  If,  however,  a  white  knight is picked  out,  only  event A has  occurred. 
Finally, if a  black  rook is selected,  neither  event A nor B have  occurred. 

Random  events  (both  joint  and  disjoint)  may  be  either  d e p e n d  e n t   o r  
i n d e p e n d e n t .  Two  events A and B a r e s a i d   t o b e   i n d e p e n d e n t  if the 
occurrence of one of them  does  not  affect  the  probability of the  other.  Other- 
wise  the  events  are  d  e p e n  d  e  n t . 

E x a  m  p 1 e s of independent  and  dependent  events. 
1. Two dice  are  tossed  simultaneously . We are  concerned with the si- 

multaneous  occurrence of the  number 4 on  both  dice.  The  occurrence of 
this  particular  number on one  die is independent of the  number which occurs 
on the  other  die.  The  events  in  question  are  therefore i n  d  e  p e n d  e  n't . 
white.  Consider  the  following  two  events:  two  balls  are  picked  from  the  box 
one  after  the  other.  Event A indicates  that  the white  ball  has  been  picked 
first.  Event B indicates  that  the  white  ball  has  been  picked  second. If the 
white  ball  has  been  selected first, the  second  ball  must  be  black, i. e . ,  in 
this  case  the  probability of event B is zero. If the  first  ball  is  black,  the 
second  ball  may  be  either  black  or  white, i. e.,  the  probability of event B 
is  not zero.  Hence,  events A and B are d e p e n d  e n t  . 
b a b  i 1 i t  y , since it is conditional  on  the  outcome of the  other  event (A).  
Conditional  probability is denoted  by 

2 .  Three  balls  are  placed  in  a box.  Two of these  are  black and  one is 

The  probability of a  dependent  event ( B )  is called a c o n  d i t  i o n   a 1  p r o - 

P(BIA). 

We shall now consider  the  technique  for  the  determination of the  pro- 
bability of two  joint  events. 

In the  example with the  chess  pieces,  the  following  three  classes of out- 
comes  are  possible  in N tes ts :  

1) event A occurs nA times; 
2 )  event B occurs na t imes; 
3)  both  events A and E occur  simultaneously ( I  times). 
According  to  the l a w  of large  numbers,  the  probability of the  simultane- 

. 

ous  occurrence of events A and B is: 

P (AAB)=  R .  I 

Similarly  the  probability of occurrence of event A is equal  to 
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The  conditional  probability of event B is the  probability of the  occurrence 
of this  event  subject  to  the  condition  that  event A has  occurred.  Event A has 
occurred ni times.  Since  out of these nA times  event E occurs  only C t imes,  
we have 

P ( B / A )  - - b 

n.4 

The  probability of the  simultaneous  occurrence of the  two  dependent 
joint  events A and B is equal  to 

o r  

P ( A E )  = P ( A ) P ( E / A ) .  J 

Therefore,  from  the  definition of dependent  events,  the  probability of 
the  simultaneous  occurrence of two  independent  joint  events  (3.6) is equal 
to 

P ( A E )  = P ( A ) P ( E ) .  (3. 6a)  

Thus, we see  that  the  probability of occurrence of only  one of the two 
joint  events  (Aor B , but not A and B )  is equal  to 

In this  equation  the  cases (1 )  when events A and E occur  simultaneously 

The  probability of occurrence of one of two  joint  events is therefore  given 
are  subtracted,  since we are  concerned  with  the  probability of A o r  E only. 

by the  equation 

P(AvE) -P(A)+P(B)"P(AhB) .  

Inserting  the  expression  for P(A A@ from (3.6). we obtain  for  dependent 
events 

o r  

P ( A  v E )  = P ( A )  + P ( E )  - P ( A ) P ( E / A )  

P ( A + B ) = P ( A )   + P ( B )   - P ( A ) P ( B / A ) .  1 (3.7) 

For  independent  events  (see  (3.6a)). this equation  takes  on  the  form 



E x a m  p 1 e 1. Two identical  dice  are  tossed.  Determine  the  probability 
of 1 appearing  simultaneously  on  both  dice. 

When  two dice  are  tossed, 1 may  occur on  one or both  dice.  The  events 
in  question  are  therefore  joint.  Since  the  probability of the  occurrence of 1 
on  one  die is independent of the  number  occurring  on  the  other,  the  events 
in  question  are  independent. 

The  probability of 1 appearing  on  the first die is 

and  on  the  second  die 

The  probability of the  simultaneous  occurrence of 1 on both  dice is there-  
fore  from  (3.6a)  equal  to 

P ( A B ) - P ( A ) P ( B ) =  -.-" 1 1  1 
6 6 -36' 

E x a   m  p 1  e 2. Determine  the  probability of the  number  3  appearing  on 

Here,  as  before,  the  events  are  joint and  independent. 
The  occurrence of a  3  on  the  first and  on the  second  die is equiprobable: 

one  die  only, when  two dice  are  tossed  simultaneously. 

P ( A )  = -; P ( B )  - - 1 1 
6 6 '  

The  probability of a  3  occurring on  one  die  only  (and  not  on  both  dice 
simultaneously) is from  (3.7a)  equal  to 

P ( A + B )  = P ( A )  + P ( B )  - P ( A ) P ( B )  'B + T - = 36. 1 1 1 1 1  

2. CHARACTERISTICS OF RANDOM VARIABLES 

A random  process is characterized by a r a n d o m   f u n c t i o n   d e s c r i b -  
ed  (Figure  3.1) by a family of different s a m p l i n g   c u r v e s .  

Let  us  consider,  for  example,  the  voltage  variation of a particular  bat- 
t e ry  while  being  charged.  The  batteFy is charged  by  direct  current at con- 
stant  ambient  temperature. No two batteries  are  perfectly  alike.  The  char- 
acter is t ics  of each  battery  depend on the  composition  and  the  active  area 
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of its electrodes,  the  composition  and  volume of the  electrolyte,  heat  trans- 
fer of the  battery  casing,  and  many  other  factors which  cannot  be  accounted 
fo r  with  due  accuracy.  Battery  charging is therefore a r a n d o m  p r o - 
c e s s .  

FIGURE 3.1. A random function of time. 

If  we record  the  battery  voltage  for  different  batteries  during  charging, 
a family of sampling  curves of the random  function is obtained  (Figure 3. 1). 
If we are  concerned with the charging  characteristics of a  particular  battery, 
the  corresponding  random  function  can  be  obtained by recording  the results 
of several  chargings of the  given  battery. 

The  random  variable  for  a  given  instant f, is determined  by  the  inter- 
section of a vertical  line  with  the  family of curves  (Figure 3.1). This  ran - 
dom  variable,  as we have  already  observed,  consists of several  random 
events (in Figure 3.1 there  are five  such  events). 

To  determine a regular,  nonrandom  quantity, it suffices  to  obtain its 
characteristic  value.  For  example,  the  statement "a nonrandum  voltage at 
a given time  instant ( t , )  is equal  to 5 v" fully  characterizes  a  no  n r a n d  o m 
( d e t e r m i n a t e )   q u a n t i t y  (voltage  in  this  case) at a given  time 
instant. 

The  situation is different  with  random  variables. A random  variable is 
specified  by its p r o b a b i l i t y   d i s t r i b u t i o n ,  i.e., bythe  spectrum 
of all  the  values  (e.  g.,  voltages) which may  occur  at  the  point  in  question 
at a  given  time  instant ( f l ) .  

To  specify  a  random  function we must,  moreover, know how the  different 
random  variables  affect  one  another.  This  interaction of random  variables 
known as c o r r e  1 a t  i o n  is considered  in  the  next  chapter. 

Random processes  studied by the  theory of probability  may  be  either 
stationary  or  nonstationary. We shall only  consider s t a t  i o n  a r y r a n  - 
d o  m  p r o c  e s s e s whose  probability  functions are  constant  with  time. 
Moreover,  the  theory of stationary  random  processes is comparatively  sim- 
ple  and  has  been  studied  in  sufficient  detail,  whereas an analysis of non- 
stationary  processes is beyond the  scope of this book. 

Stationary  random  processes  have  the so called e r g o d i c  property. 
This  highly  important  property  amounts  to  the  following:  each  individual 
sample of a random  function  taken  over a sufficiently  long  period of t ime 
fully  specifies,  from  the  point of view of the  theory of probability,  the 
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entire  family of sample  curves of the  random  function.  In  this  case,  the 
analysis of the  family of sample  curves  can  be  reduced  to  the  analysis of a 
single  curve.  In  stationary  processes,  the  random  variable is obtained  not 
by  examining a family of sample  curves of the  random  function at a given 
time  instant  (Figure 3. l), but rather  by  considering  the  behavior of a single 
sample  along  the  time axis. 

FIGURE 3.2. Step random function. 

Since in a stationary  process  a  single  sample  specifies  the  entire  random 
function, we shall  speak  in what  follows of r a n d o m   f u n  c t i o n  , omit - 
ting  the  qualifying  word  "sample". 

It  should  be  kept  in  mind  that  a  random  function is not  "absolutely"  ran- 
dom.  In  most  cases we have  some  knowledge of its principal  characteristic 
features. A random  function is therefore not entirely  arbitrary and is gen- 
erally  subject  to  certain  constraints. 

It is sometimes  possible  to  determine  a  part of the  frequency  spectrum 
comprising  the  function; w e  can  often  specify  the  limiting  values of the  func- 
tion o r  the  range of its derivative.  For  each  random  function we therefore 
have  a  definite  probability  distribution of the  random  variables. 

The  random  variables of a random  function  can  either  be  discrete  (Fig- 
ure 3 .2 )  o r  continuous  (Figure 3 . 3 ) .  

We shall first consider how to  determine  the  probability  distribution of 
a  discrete  random  variable. 

The  number of t imes  each voltage  step in Figure 3.2 occurs is counted: 

UI -nl t imes,  

* - n ~  t imes,  

uL "n, times. 
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These  numbers  designated nl to f tk  are divided  by N, the  number of rneasure- 
ments  made  during  the  particular  time  interval.  This  gives  the d i s t r i b  u - 
t i o n   s e q u e n c e  in  Table 3.1. 

Inaddition,  the p r o b a b i l i t y   d i s t r i b u t i o n   f u n c t i o n  of a dis-  
crete  random  variable  can be determined.  This  function  can  be  constructed 
from  the  parameters uI, Up, u k ,  and N. The  discrete  values of avoltage  from 
Figure 3.2 are   marked off  on the  abscissa in Figure 3 . 4 ,  and on the  ordi- 
nate  the  ratio of the  number of values, at whichthe  voltageislowerthan  the 
value  specified,  to  the  total  number of measurements (N). 

U 

FIGURE 3.3.  Continuous random function. 

The  resulting  curve  is  the p r o b a b i l i t y   d i s t r i b u t i o n   f u n c t i o n  

The  probability  distribution  function of a continuous  random  variable is 
o f  a d i s c r e t e   r a n d o m   v a r i a b l e .  

derived by replacing  the  continuous  random  function  (Figure 3 . 3 )  with  a 
stepwise  curve  at  constant  intervals At. The  distribution  function is plotted 
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as previously, the only  difference  being that  the resulting  discrete probabi- 
lity d'istribution  function is approximated as far  as  possible by a continuous 
curve  (Figure 3 . 5 ) .  

variate. 

I 

F@lX 

lul 

I 

FIGURE 3.5. Probability distribution  function  of a continu- 
ous random viriable. 

Given the probability distribution function of either  a  discrete o r  a  con- 
tinuous random variable, the probability that  any voltage specified by the 
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random  function is less than a preassigned  voltage U, (Figure 3. 5 )  maybe 
determined. 

f e r e n t i a l   p r o b a b i l i t y   d i s t r i b u t i o n   f u n c t i o n .  

distribution  function: 

Another  curve  describing a continuous  random  variable is t h e  d i f  - 

The  curve  (see  Figure 3. 6 )  is obtained  by  differentiating  the  probability 

FIGURE 3. 6. Differentlal  probability  distribution  function 
(probability  density  distribution) of a  continuous  variate. 

To determine  the  differential  distribution  function  from a continuous  ran- 
dom  function of time,  the  latter  should  again be replaced by a step  curve. 
In  practice,  the  procedure is simplified as follows  (Figure 3. 7). We decide 
on a time  interval At and  draw at these  constant  intervals (see the  bottom 
graph ) straight  lines  meeting  the  random  function  at N points.  Lines  par- 
allel to  the  time  axis  are  then  drawn at arbitrary  constant  intervals Au. Di- 
viding  the  number of points  within  each AU interval by the  total  number of 
points ( h r ) ,  we obtain  the  corresponding  ordinate of the  differential  function 
(the  dashed  lines  in  the  upper  curve  in  Figure 3 . 7 ) .  The  resulting  smoothen- 
ed  step  curve is the  differential  distribution  function of the  continuous  ran- 
dom variable. 

function of a continuous  random  variable  (Figure 3 . 6 )  which is not  apparent 
from its distribution  sequence. 

randomly  measured  voltage  will  be  equal  to a given  value. For  example, 
PI gives  the  probability  that  randomly  measured  voltage is equal  to ub 
(Table 3. 1 ). 

Suppose now that  the  ordinates of the  dashed  curve in the  upper  graph of 
Figure 3. 7 also  give  the  probability  that  measured  voltage  will  fall  in a 
given  interval Au. The  probability  that  the  measured  voltage  falls in  one of 

We shall now examine a distinctive  feature of the  differential  distribution 

Each  element of the  distribution  sequence  gives  the  probability  that  any 
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the k given Au intervals is equal  to one: 

PI+P2+ ... +P* -1. ( 3 . 9 )  

where P I  = the  probabilitythat  the  measured  voltage falls inthe first AU inter-  

P2 = the  probability  that  the  measured  voltage falls in  the  second fh 
val; 

interval,  etc. 

i 
FIGURE 3.7. Construction of the  differential  pro- 
bability  distribution  function of a continuous ran- 
dom variable. 

If the  number k of Au intervals is increased, we readily  see  that as 
k-. 00, each of these  intervals is reduced  to a point.  In this  case  the  pro- 
bability  that  any  randomly  measured  voltage falls in  one of the  intervals re- 
duces  to  the  probability  that  the  measured  voltage is equal  to  a  given  value 
(the interval  being  reduced  to a point). 

On the  other hand, the  sum of these k probabilities  remains  constant and 
equal  to 1 (see 3 . 9 ) .  Therefore (at k = m )  the  probability  that  the  measured 
voltage falls at a given  point (i. e . ,  is equal  to a preassigned  value) is zero. 

Neverthless, none of the  ordinates of the  differential  distribution  func- 
tion  plotted  in  Figure 3. 7 f o r  a continuous  random  variable is zero,  because, 
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when passing  from  a  discrete  to  a  continuous  random  variable,  the  ordinate 
no longer  gives  the  probability (P) but rather  the  p r o b  a b i 1 i t  y  d e n s i t  y 
( p )  ,defined as  the  ratio of the  probability  to  the  voltage  interval  in  question: 

where du is the  width of the  interval  at &=-. 

is therefore  also  called  the p r o b a b i l i t y   d e n s i t y   d i s t r i b u t i o n .  

& (Figure 3 . 6 )  is determined  from  the  density  distribution by integration: 

The  differential  probability  distribution  function of a  continuous  variate 

The  probability  that  a  randomly  measured  voltage  falls  between u, and 

The  probability of all  possible  events is 1 ( 3 . 4 ) ,  therefore 

m 

P -  J p  du- 1. 
"a0 

(3.10) 

(3.11) 

In other  words,  the  area  between  the  curve p ( u ) = f ( u )  and  the abscissa  (#)is 
always  normalized  to 1. The  probability  that  a  given  voltage  falls  between 
u,>a>u,is graphically  determined  (Figure 3 . 6 )  a s  the  ratio of the  hatched 
area  to  the  total  area  between  the  curve p(u)  = f (u )  and  the  abscissa. 

When dealing  with  random  functions, w e  should remember  that   there 
exist two different  concepts  for  the  average  values of these  functions. 

Firs t ,   there  is the t i  m e a v e r a g e  of a  random  variable.  For  a  dis - 
Crete  random  function  (Figure 3.2) the  time  average of the  random  variable 
is defined a s  

where U I - U ~  = the  voltages on the  corresponding At portions; 
N = the  total  number of At intervals  constituting  the  range of the 

random  function (T). 
Multiplying  the  numerator  and  the  denominator by dl, we obtain 

where T - N  At is the  range of the  random  function. 
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For  a  continuous  random  function (Mt-cO), (3.12)takes  on  the  following 
form: 

If the  function  must  be  averaged  over  an  infinite  time  interval  (from 
-00 to +-), this  equation is slightly  modified: 

This  equation is the  familiar  one  used  to  determine  the  average of both 

In  addition,  random  variables  can  be  characterized by the i r  s t  a t  i s t  i - random  and  determinative  variables. 

c a l   a v e r a g e ,  also  called m a t h e m a t i c a l   e x p e c t a t i o n .   T h i s  
average is defined  for  a  discrete  random  function by the  equation 

where &,= the  voltage of the m -th  interval At (Figure 3.2); 
Pm= the  probability of this  voltage. 

This  probability  can  be  expressed  in  terms of the  probability  density: 

Equation (3. 14)  can  therefore  be  somewhat  modified: 

1 

rb= C P . P A 0 .  
mrl 

For a  continuous  random  function (Au-co) we therefore  have 
m 

uo- j PUdU. 
-a 

(3. 15) 

The  abscissa of the  center of gravityof  the  plane  homogeneous  figure  (3.6) 
enclosed  between  the  function p = f ( u )  and the (u)  axis is given by 

-0. jpu& 
u,= - S '  

where s is the  area of the  figure. But, accordingto (3. ll), this a rea  s is al- 
ways  equal  to l. Therefore, (3. 15) determines  the  abscissa of the  center of 
gravity of this  figure. 

We have  previously  observed  that  under  ce&ain  conditions all stationary 
random  processes  have  the  so-called  ergodic  property. It follows  from  this 
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property (we omit  the  proof of the  proposition)  that  for  ergodic  processes 
the  statist ical   average of a  random  variable is always  equal  to its t ime  aver- 
age. We may  therefore  write 

aav=- (3. 16) 

T h e   d e   v i   a t   i o n  of a  random  variable  is  defined  as  the  difference 

Au=u"u* (3.17) 

where u = the  current  value of the  random  variable; 
uo = the  statistical  average  (mathematical  expectation). 

The  theory of probability  often  makes  use of the  v a r i a n  c  e of a  random 
variable.  Variance  characterizes  the  intensity of a  random  variable  about 
its average,  and is defined  by  the  equation 

c 

(3. 181 

where p is the  probability  density  distribution. If the  variance is zero,  the 
random  variable is reduced  to  a  constant  value  equal  to UO. 

To  obtain a parameter  whose  dimensions are   those of the  random  vari- 
able ( u )  and of its statistical  average (uo), the  variance is often  replaced by 
t h e   r o o t   - m e a n - s q u a r e  or s t a n d a r d   d e v i a t i o n  of the  random 
variable: 

(3.19) 

We have  shown  previously  that  the  probability  density  distribution  can be 
determined  from  experimental  data.  However,  the  probability  density of 
fairlymany  random  variables  have n o r m a l  (or G a u s s i a n )   d i s t r i -  
b u t   i o n  . This  distribution is defined a s  

(3.20) 

where u = the  root-mean-square  (rms)  deviation; 
uo = the  statistical  average of the  random  variable. 

The  normal  probability  density  distribution is represented by the  curve 
shown  in Figure 3.8. 

The  normal  distribution  defined by (3.20) is always  symmetrical  about 
the  vertical  axis  passing  through its maximum.  The  statistical  average uo , 
(see (3. 15))gives  the  abscissa of the  center of gravity of Figure 3.8 and  de- 
termines  in  this  case  the  voltage  at which the  maximum of the  normal  dis-  
tribution is attained: 

If a  random  function of time  has no d-c  component,  the  average  (3.16) is 
zero.  In  this  case  (Figure  3.9)  the  normal-distribution  curve is symmetri-  
cal  about  the  ordinate  axis. 
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FIGURE 3.8.  Normal  probability density distribution. 

FIt iURE 3. 9. Normal distribution of a random variable 
with no d-c component. 

It  follows  from (3. 2 0 )  that  the rrns deviation u is a measure of the  steep- 
ness of the  normal  distribution  curve.  The  effect of a on the  shape of this 
curve is illustrated in Figure 3. 9. 

3. ENTROPY OF A RANDOM EVENT 

Electrical  current is used  for  two  purposes.  First,  as a c a r r i e r  of ener- 
gy to  various  systems  and  assemblies;  second,  to  transmit  info r m a t  i o n . 
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When electrical  current  functions as an  energy-transferring  medium, we 
are mostly  concerned with the  efficiency of transfer,   since it is desirable  to 
transfer  energy with minimum  losses. 

On  the  other  hand,  a  distinctive  feature of any  transmission of informa- 
tion is its independence of the  amount of energy  lost  in  transmitting  the  cur- 
rent which carries  this  information. In other  words,  an  equal  amount of in- 
formation  can  be  transmitted by currents of different  amplitudes. When cur- 
rent is used as an  information-transmitting  medium,  the  problems  involved 
in  maximizing  the  efficiency  are  therefore of no primary  importance.  The 
main  consideration is maximizing  the  amount of information  transmitted  in 
a given  time  interval. 

we know some  relevant  facts, but there   are   some  parameters  and charac- 
ter is t ics  which are unknown to  us. In .:his case we say  that  the  system is 
indeterminate. A measure of this  indeterminacy is the e n t r o p y  H. 

When we have  received  some  information  on  this  system, its entropy  de- 
c reases   t o  Hfin. 

When dealing with physical  systems  (automatic-control  systems  included), 

Consider  the  following  experiment.  Take a system  whose  entropy is  hi^. 

The a m o u n t  of i n f o r m a t i o n  (9) received is defined a s  

(3.21) 

The a m o u n t  of i n f o r m a t i o n  is thus  equal  to  the  entropy  decre- 
ment  produced  by  the  message  received. When the  message  received  makes 
the  physical  system  fully  determinate (Hf in  =O), the  amount of information 
is numerically  equal  to  the  initial  entropy of the  system: 

9' Hini. (3.21a) 

a )  Determination of entropy of a  discrete  signal 

In the  simplest  case  the  entropy is due  to  the  possibility of receiving 
either of two  messages:  "the  event  has  occurred'' or "the  event  has not 
occurred".  This  can  be  written  briefly  as 

"YES-NO" o r  "1-0". 

The u n i t   o f   e n  t r o p y  is therefore  defined  as  the  uncertainty  in- 
volved in the  choice of one of the  two  possible  outcomes YES-NO or 1-0 (the 
binary  unit).  Since  the  amount of information  (3.21) is measured  in  the  same 
units,  this  signal  also  defines  the u n i t   o f   i n f o   r m   a t   i o n .  

with a  probable  choice of one  out of m possible  outcomes. 

eight  cells  (Figure 3. 10). 

selected, we must know the  positions of three  switches. 

We shall now determine  the  entropy of a  simple  event when we are  faced 

Consider  the  following  example.  Find  the  entropy of selecting  one  out of 

It  follows  from  Figure 3. 10 that,   in  order  to  state which cells  have  been 

These  data are arranged in Table  3.2. 
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TABLE 3.2 

Cel l  number 

Switch 11 0 1 1 

Switch 111 0 

-1 

I 
FIGURE 3. 10. Selection  circuit for one out 
of eight  cells. 

The  entropy  involved in the  selection of one out of e i g h t cells is thus 
t h r e  e  (the  position of three  switches is uncertain).  Mathematically  this 
is stated as 

This  expression  can  be  slightly  modified: 

The  entropy is thus  equal  not  to  the  number of cells  (here 8).  but  to  the 
power  to  which  the  base 2 is raised  to  give  the  number of cells (P=8 so that 
H = 3 ) .  
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Therefore, in general,  the  entropy of an  event  (the  uncertainty  involved 
in the  occurrence of one  out of m possible  outcomes) is equal  to 

H = log2 m. (3.22) 

This  definition of the  entropy of a  simple  event is known as H a r t 1 e  y 1 s 

In  the  previous  example m=8,; the  entropy  involved  inthe  choice of  one  cell 
l a w .  

out of eight is therefore  equal  to 

H=logzm=log28=3. 

Equation  (3.22)is  also  assumed to applywhen m is not an  integer. 
Information  theory is very  closely  associated with  the  theory of probabil- 

ity.  Indeed,  let all the m values of the  random  variable  considered  in  the 
preceding be equiprobable.  The  probability  that  one of them  occurs  is   there- 
for  equal to 

1 
m 

P= -. 
In this  case  (3.22)  the  entropy of the  random  event  entailing  the  occur- 

rence of one of the m values  is  written  in  the  form 

(3.23) 

We thus  see  that  the  higner  the  probability of an  event,  the  lower its en- 
tropy  (uncertainty).  Indeed, if  we know with certainty  (with  probability P= 1b 
that  cell No. 7 in  Figure  3.10  will  be  selected,  the  entropy of the  event  (the 
uncertainty of cell No. 7 being  selected) is zero. 

Equation  (3.23)  can  be  written  in  a  slightly  different  form: 

But 

Therefore, 

log2 1 -0.. 

This  equation  determines  the  entropy of a single  (simple)  event. A com- 
pound event  consisting of n equiprobable  simple  independent  events  has n 
t imes as much  entropy  (3.6a): 

H= -n log2 P. (3.25) 

It  should  be  kept  in  mind  that  the  probability  (3.2) is always  between  the 
l imits 1 >,P>,O. Therefore, log, P is negative, i. e . ,  t he  entropy is always 
positive. 
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Consider  the  case when different  events  have  different  probabilities. By 
analogy  with  equation (3.24), we write  for  each  event 

(3.26) 

where k is the  index of the  event (k-1.2 ,..., m). 

is 5 .  
Equation (3.26) determines  the  entropy of a  single  event  whose  probability 

Further  consider m different  events with the  following  probabilities: 

event AI-P,; 

event A F P ~ ;  

event A,-P,. 
In  general,  several  events  may  occur  simultaneously.  The  events  in 

If event  has  the  probability P I ,  then  the  probability  (3.6a) of two  events 

. . . . . . . . 

question  are  therefore  joint.  They are, moreover,  independent. 

A l  occurring  simultaneously is equal  to 

or 

P(2AI) = P:. 

The  probability  that  event AI occurs a t imes is naturally 

P ( d 1 )  =E.  (3.27) 

Further  consider  a compound  event  consisting of the  simultaneous  occur- 

The  probability  that  event A l  r ecu r s  nPI times  in  the  compound  event  (in 
rence of n simple  events A I ,  A2, . .. , A,. 

n simple  events) is from  equation (3.27) equal  to 

Similarly,  the  probability  that  event As recurs  nP2 t imes is equal  to 

PI(nP2)Ad=Pp.  

Therefore,  from  equation (3. sa), the  probabilityofthe  compound  event 
consisting of simple  events A I ,  A,. . . . , A, is equal  to 

Hence,  from  equation (3.24), the  entropy of the  compound  event is deter-  
mined  by 

113 



or 

(3.28) 

Equation  (3.28),  called S h a n n o n ' s   e q u a t i o n ,   g i v e s t h e e n t r o p y o f   a  
compound  event  consisting of simultaneous  occurrence of n simple  events of 
m kinds  whose  probabilities  are  different. 

Ifthe  events of all m kinds are  equiprobable (Pl=P2=.  . . = P m = P ) ,  Shannon's 
equation  reduces  to 

I 

H= -nP logz P -  -nrnPlog2 P. 
k-1 

Since  the  probability of m equiprobable  events is P -  - the  preceding 1 
m' 

equation  can  be  rewritten as 

H= - n  log2 P. 

We thus  see  that  equation (3.25), as could  have  been  expected  intuitively, 

When a  simple  event (n=  1) is considered,  equation  (3.28) is written as 
is a particular  case of Shannon's  equation. 

(3.28a) 

The  reader  should  observe  one  essential  difference  between  equations 
(3.24)and  (3.28a).  Equation  (3.24)gives  the  entropyof  one  out of rn equipro- 
bable  events.  Equation  (3.28a),  on  the  other  hand,  gives  the  average  entropy 
fo r  one  out of m different  events  whose  probabilities  are  different. 

( B o l t z m a n n ' s   l a w ) ,  the  entropyof  closed  space is 
It is noteworthy  that  according  to  the  second  law of thermodynamics 

(3.29) 

where N =  the  total  number of molecules in the  given  space; 
n1 = the  number of molecules  having  the  velocity v l+AY;  
n2 = the  number of molecules  having  the  velocity V2+AV, etc; 

AV = the  velocity  increment. 
We have  previously  shown in equation  (1.4)  that 

In - nk =nlog2 5 N N' 

where n is a coefficient . 
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The  ratio is in fact the  probability  that  the  molecules  have  the  velocity 
N 

vk+Av. We may  therefore put 

The  entropy (3.29) is thus  determined by the  expression 

(3.30) 

Comparing  this  equation  with  Shannon's  law (3.28), we see  why Shannon 
chose  the  word  entropy  to  describe  the  degree of uncertainty of a  physical 
system. 

Originally  the  concept of entropy  was  used  only  in  thermodynamics, 
where  entropy  characterized  the  irreversible  dissipation of energy  in a 
closed  physical  system and thus  could  only  increase. In cybernetics,  how- 
ever,  entropy  may  either  increase o r  decrease,  since  this  concept is close- 
ly  connected  with  the  measure of uncertainty. An increase in the  amount of 
information  will  lower  the  uncertainty, i. e.,   the  entropy will decrease.  

There is no contradiction  betweenthe  staternentthat,  in  cybernetics,  en- 
tropy  may  equally  well  increase and decrease,  whereas in  physical  systems 
entropy  may  only  increase.  This is so, because  thermodynamics is con- 
cerned with limited  systems,  whereas  the  universe  is  infinite,  and  there 
are  apparently  areas  where new "solar"  systems  are  being  created and the 
local  (thermodynamic ) entropy  decreases. 

Let us consider  an  example of entropy  determination. 
In  Riga,  trolleybuses Nos 4, 6,  and 7 travel down Lenin  Street.  Trolley- 

bus No. 4 passes   every 3 minutes, No. 6 every 4 minutes,  and No. 7 every 
5 minutes.  Determine  the  average  entropy of communications  on all three 
trolleybus  lines. 

The  probability  that  any of the  trolleybuses  arrives is 1. Therefore, 

where PC PI,  P7 are,  respectively,  the  probabilities  that  trolleybuses No. 4, No. 
6 and No. 7 arr ive.  

Moreover,  given  the  data  on  the  frequency of the  trolleybuses, we have 

3P4 = #P#, 
3P,-5P,. 

Inserting PI and P7 into (3.31). we find the  probability of trolleybus 
No. 4 arriving: 

P,- - 47 2o -0.426. 

In  addition,  from (3.31) we obtain  the  probabilities of trolleybuses No. 6 and 
No. 7 arriving: 

PI-0.319; 
A-0.255. 
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Given  the  probability of each  event, we find  from  (3.28a)  the  average  en- 
tropy of these  events: 

H= - P,  log2 Pr - PC log2 Pe-  Pl log2 Pt= 
= - 0.426 log2 0.426 - 0.3 19 log2 0.3 19 - 0.255 log2 0.255 = 1.55. 

In a binary-number  system  there  are  two  random  events  (an  outcome of 
1 and 0). We shall now consider  a  compound  random  event  consisting of two 
(m=2) simple  random  events. 

The  average  entropy  for  each of these  simple  events is from  (3.28a): 

H = - PI log2 P, -Po log2 Po, (3. 32) 

where P I  and PO are  the  probabilities  that  the  outcome  is 1 and 0. 
Let  the  probability of an  outcome of 1 be 

PI = P. 

Since  the  probability of all (in this  case,  two)  events is equal  to  one, 

the  probability of the  second  event is given by 

Po- 1 -P. 

Inserting  the  probabilities PI and PO into (3. 32). we obtain  the  average 
entropy  per  simple  event (the  outcome of 1 or 0): 

H = - P l o g 2 P - ( l - P )  log2 (I-P). (3.33) 

This  relationship is plotted in Figure 3. 11. Differentiating (3. 33) we 
easily  find  that  the  entropy is maximum when the  two  events  are  equipro- 
bable: 

P=P1=Po= - 1 
2 '  (3.34) 

When binary-coded  information is transmitted,  the  amount of information 
delivered by a  single  signal is highest when the  entropy is maximum  (see 
(3.21a)). We shouldtherefore  tryto  dispatch  messages  coded s o  that  ones  and 
zeros  are  as  close  to  equiprobable  as  possible.  

Until now  we have  only  considered  independent  events. A s  regards  de- 
pendent  events,  the  following  should  be  observed. 

The  dependence of the  probability of event B on  the  outcome of event A 
in  itself  gives  some  information on event B , thus  reducing  the  entropy of 
this  event.  The  entropy of dependent  events  (ficon)is  therefore  always  less 
than  the  entropy (H) of independent  events: 
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It is generally  said  that c o r r e  1 a t  i o n  (dependence)  between  events 
lowers  the  entropy  (uncertainty). 

H 

FIGURE 3. 11. Average  elltropy  as  a funct ion of 
the probability of one binary event. 

b)  Measuring  the  entropy of a  continuous  signal 

We have  previously  shown  in  section 1-5 that  a  continuous  function of 
time  can  be  represented with  any  desired  accuracy by a  finite  number of its 
values. In other  words,  given  the  admissible  error, we may  determine  the 
minimum  increment Au allowed,  thus  replacing  the  continuous  function  by 
a  discrete  curve  (analog-to-digital  conversion). 

In practice,  this  minimum  increment  is  determined  from  the  equation 

(3. 36) 

where L = the  admissible  error  in  percent;   this  error is multiplied by 2, 
since  the  error  specified  refers  to  deviations  from  either  side 
of the  true  value; 

range; 
u,, = the  maximum  value of the  continuous  function  in  the  given 

umin = the  minimum  value of the  function  in  this  range. 
The  continuous  curve u==f(f) is divided  into m steps of Au width. The  ori-  

ginal  curve is now replaced  by a stepped  curve  (Figure 3.12) consisting of 
m discrete  (digital)  values: 
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If now equations (3. 36) and (3. 37) are solved  simultaneously, we obtain 

50 rn- -. 
C 

(3.38 

An analysis of a  continuous  random  variable is thus  reduced  to  the  ana- 
lysis of a  discrete  random  variable  assuming m Values.  When all m events 
are  equiprobable, w e  can  easily  determine  the  probability of each  event 
using (3.38): 

(3.39) 

The  entropy of an  event  (the  entropy of the  occurrence of any  step ) is 
determined  from  (3.24): 

(3.40) 

If the  different  events  (occurrence of different  steps ) have  different  pro- 
babilities,  their  entropy is determined by  Shannon's  equation  (3.28a). 

Aa 

U 
"""""" 

"""" 

""" 

""- I: "- 
"- 1 i , I 

' 1 1  I I 

"LfJ" 
I 4 

FIGURE 3. 12. Substitution of a discrete 
curve  for a continuous  curve. 

The  minimum  increment Au is still calculated  from (3.36) and is a con- 
stant  for  the  entire  range.  The  derivative of the  continuous  curve,  however, 
is not  constant  over  this  range.  Therefore,  the width (At&) of each  step in 
Figure 3. 12 is also not constant. 

Let  us now determine  the  minimum  time  interval (At&). 

Hence 
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where Au = the  increment  given  by (3.36); 
u',,,.~ = the  maximum  rate of change of the  continuous  curve  in  the 

given  time  interval. 
Inserting AU from (3. 36) into (3.41), gives 

Dividing  the  entropy of an event  (the  occurrence of a  step) by the  dura- 
tion  (in  time) of the  corresponding  step,  gives  the  frequency with  which the 
information  transmitted by the  particular  step is received: 

n 
At' f,= - 

For  the  minimum  t ime  interval we have 

Inserting ff from (3.40) and At,, from (3.42), we obtain 

(3.43) 

(3.44) 

(3.45) 

Equation (3.45) gives  the  maximum  frequency with  which a receiver  should 
receive  the  information  transmitted by a continuous  signal. 

E x a m  p 1 e . Find  the  maximum  frequency with  which the  information 
transmitted by  a  sinusoidal  curve ( f - 5 0  cycles  per  second)  varying  from 
zero  to  maximum  (um,,=lOv)(Figure 3.13) should  be  received;  admissible 
e r r o r  e-5%. 

We first  determine  the  step of the  curve  approximating  the  sinusoidal 
function.  From (3.36) we have 

The  number of steps is equal  from (3.38) to 

The  sinusoidal  curve is thus  approximated by a ten-step  curve. 
We fur ther  find  the  probability of each of the  ten  events in question (of 

each of the  ten  voltage  steps). A sinusoidal  function is a  periodic  curve 
where  the  probabilities of the  respective  voltage  values  (disregarding  the 
sign)  recur  every  quarter  cycle.  To determine all the  probabilities, it 

therefore  suffices  to  consider  the  sinusoidal  curve for- >O>o. x 
2 

The  ordinate in Figure 3.13 is divided  into  steps of A u  I- 
72 

This  gives 37 

points  (including  the  origin)  on  the  sinusoidal  curve. Now count  the  points 

r 
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in  each of the  ten (m=lO) voltage  intervals  (a  point  occurring  at  the bound- 
a r y  of two  intervals  will  be  counted as + in  each  interval)  and  divide  the 
count  by  the  total  number of points (37). We now determine  the  probability 
of each of the  ten  voltage  steps  (the  random  events).  The  data  are  arranged 
in  Table 3. 3. 

TABLE 3. 3 
~. - 

Number of step 

0. 122 0. 095 0. 081 G. 0675 0. 0675 0. 0675 0.0675 0.0675 0. 0675 Probability 
7-8 I 8-9 6-7 5-6 4-5  3-4 2-3 1-2 0-1 Voltage  interval, v 

9 8 I 6 5 4 2 3  1 

- .. 

From  these  data we plot  the  step  curve shown  in  the  upper  graph in 
Figure 3. 13. 

4200 I n 
n 2 4 6 8 m  

"--U 
I 
I 
I 
I 
I 

I 

' i  d 

FIGURE 3. 13. Dererminmg  the  probabilities of 
sinusoidal-voltage  intervals. 

Since  the  probabilities of the  individual  voltage  steps  are  different,  the 
average  entropy of one  out of ten (rn=10) events is found from  Shannon's 
equation  (3.28a): 

II 10 

H -  - C P k  log2 P h =  - P h  log2 Ph. 
&=I k t  

1 2 0  



Inserting  the  probabilities  from  Table 3.3, we obtain 

H =  - (6-0.0675l0g20.0675+0.081 lOg~0.081+0.095X 
Xl0g20.095+0.122l0g20.122+0.297l0g~0.297) -3.07. 

If now all the  steps  are  taken as equiprobable  (in  practice  this  means 

that  the  sinusoidal  curve  is  replaced by  a  straight  line  in  the -->,e> 0 inter-  

Val), the  entropy of each  event is determined  from  (3.40): 

x 
2 

The  calculations  are  naturally  simplified, but the  result is less  accurate.  
To  determine  the  maximum  frequency of information  inequation  (3.45)we 

must know the  maximum  rate of change of the  voltage.  This  rate of change 
is  very  simple  to  determine. 

The  sine  function is analytically  defined  as 

u==umXsin 2nft. 

therefore, by differentiation, 

du - & = 2nfu- cos 2nft. 

This  derivative  has  its  maximum  at 2nff=O, since cos0-1 1. Hence, 

E) =u;,=2xfu,,x - 2 ~ 5 0  10=3140 v/sec. 
m u  

The  maximum  frequency  for which the  receiver  should  be  adapted is 
from  (3.45)  equal  to 

- - _.- = 10500 binary  units/sec . 
5 10-0 

4. OPTIMUM CODE 

Let US now consider  the  coding of information  transmitted by a discrete 

We have  previously shown  in  section  3-3a  that  the  entropy of a binary 
binary  signal (1 -0). 

signal is maximum when  two  conditions are  satisfied: 
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a) 1 and 0 are equiprobable: 

1 
2 Po=P1=- -; 

b )  all the  signals  are  independent. 
Suppose  that  binary  information is transmitted as follows: 1 is constant 

voltage of duration T, and 0 is the  absence of voltage  during T. The  number 
of s ignals   (pulses)   t ransmit ted  per   second  through  the  channel   ( i .e . ,  
the  communication  link) is therefore 

1 n = - .  
'5 

The  c h a  n  n  e  1  c  a  p a c i t  y  (the  maximum  number of signals which can 
be  transmitted  through t h e  channel in one  second) is therefore 

1 C= -. z ( 3 . 4 6 )  

A code  will be called o p t  i  m u m if it   ensures  the  transmission of the 
maximum  amount of information  through  the  channel.  Shannon  proved  that, 
regardless of the  actual  optimum  code,  the  average  rate of transmission of 
information  through  the  channel  cannot  exceed 

C VI=- - H' ( 3 . 4 7 )  

where c = the  channel  capacity; 
f f =  the  entropy of the  message  transmitted. 

This  equation  follows  from S h a n n o n ' s  f i r s t  t h e o r e m .  
Consider  an  example for  the  determination of the  maximum  rate of t r ans -  

mission (VI). 
The  Latvian  alphabet  consists of 30 le t ters  (m=30), including  the  "blankJ', 

i. e.,  space  between two words. For the  sake of simplicity,  let  all  the  let- 
t e r s  be equiprobable.  The  entropy of a single  letter  from (3.24) is then  equal 
to  

H- -log* P. 

Since all the  letters  are  assumed  equiprobable, we have  for  each  letter 

1 1  
m 

p =  -= - - "0.0333. 
The  entropy of a single  letter  is  therefore 

H = - log:, 0.0333 4.93. 

Let  the  channel  capacity  be c = 1000 pulses  per  second.  Regardless of the 
actual  method of binary  coding,  the  contents of the  message  cannot  be 
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transmitted  through  the  channel  faster  than  that  given  by (3.47): 

VI= - - - - n - 4.93 
-203 le t ters /sec.  

To  determine  the  optimum  code, w e  must  take  into  consideration  some 
statistical  data on the  message  transmitted.   For  the  most  frequently  occur- 
ring  signals  the  code  should  be as short  as  possible,  whereas  the  infrequent 
signals  can  be  coded  by a longer  succession of bits. 

a s  follows. 
A practical   optimum  code,  the  Shannon - F a n  o c o d e ,  is constructed 

A l l  the  signals  to  be  coded  are  divided  into two groups so that  the  pro- 

bability of each  group  be  as  close  to - as  possible.  This  maximizes  the  in- I 
2 

formation  (the  entropy of the  message is at  its maximum).  One of the  two 
groups is then  coded a s  1 and  the  other  as 0. The  signals  collected  in  each 

group are  again  divided  into two  groups  with  probabilities  close  to - Each 

of the  secondary  groups  is  again  coded  as 1 and 0, and are  placed in the  sec-  
ond position.  This  process is repeated  until  each  group  comprises  one  sig- 
nal  only. 

1 
2 '  

Let us apply  the  Shannon-Fano  procedure  to  the  following  example. 
Consider 10 signals whose probabilities  are  given  in  Table 3.  4. 
The  code  is  compiled in five  stages,  as we see  from  the  table. In  the 

first stage  the  signals  are  divided  into two approximately  equiprobable 
groups.  In  the first group (al) we have  signals Nos  0 and 1, whose  total 
probability  is 0.45, and  in  the  second  group (61) signals Nos 2 through 9 
whose total  probability is 0. 55. The  signals of the first group  are coded as 
1, and those of the  second  group a s  0. 

Numb' 
sign 
" 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

_. 

er of 
a1 

Probabiliry 
of signal 

0. 25 
0. 20 
0. 15 
0.10 
0.10 
0.05 
0. 05 
0. 05 
0. 03 
0. 02 

T 
TABLE 3.4 

~ - "~ ~ 

Stages I 
1 IV y 0 0 0 0 

0 
0 0 
0 0 
- 

Code 

0 0  
0 0  

- 
V 

1 
0 
1 
0 - 

When the  most  significant  bit is 1, the  code  refers  to  the first group of 

In the  second  stage  the first group of signals ( 0 1 )  is divided  into  two  and 
signals,  and when it is 0 the  code  refers  to  the  second  group. 

signal No. 0 is coded  by 1 (in  the  next  most  significant  position),  while  sig- 
nal No. 1 is coded  by 0. The  second  group of signals (b , )  is also  divided  into 
two  approximately  equiprobable  parts.  The first p a r t   ( q ) i s  coded  by 1 in 
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the  next  most  significant  position  (column  III),  and  the  second  group (d2) by 
zero.  The  process is continued  until  finally  each  group  contains  but  one  sig- 
nal. 

Note that  ten  signals can be  coded  (see(l.3))by  four-bit  numbers.  Inthe 
optimum  code,  however,  the  different  signals  have  from  two  to  five  bits. 
The  higher  the  probability of a  signal,  the  shorter its code. 

The  optimum  Shannon-Fano  code is therefore  constructed so  that  the 
component  signals (1 and 0) are  equiprobable as far as  possible.  

Until now we have  considered  only  no i s e 1 e s s c h a n n  e 1 s , 
Let  us now consider  the  effect of noise  in  the  previous  example. If the 

channel is noiseless,  then  given  the  code we can  identify  each  signal  receiv- 
ed  with  a  probability of one.  Suppose  that we have  thus  identified  signal No. 3 
with  full  certainty  (Figure  3.  14,a) 

If the  signal i s  accompanied by noise, we cannot  identify it with  a pro- 
bability of one,  saying,  e.  g.,  that  it is certainly No. 3  (Figure 3. 14, b). In 
this  case  all we can  say is that  most  probably  this is signal No.  3, but the 
possibility is not  excluded of this  being  a  different  signal.  The  probability 
distribution of a  message  concerning  a  signal is shown  in Figure 3. 14, b. 

t s 6 ~ u g m  
a 

""""""" 

b 

FIGURE 3. 14. Probability when a message is received. 

If there  is noise  some  information is lost.  This  loss is determined by 
the  equation 

AH= Hi, - H. (3.48) 

where Hi,= the  amount of information  carried by the  signal at the  channel 
input; 

H =  the  amount of information  in  the  signal at the  channel  output. 
AH characterizes  the  average  measure of uncertainty  remaining  after the 

The  maximum rate of message  transmission  in a noiseless  channel is 
signal is received. 

determined  by (3.47). If there is noise,  this rate is reduced  owing  to loss 
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of information as given by (3.48).  Therefore, 

(3 .49 )  

This relationship follows from S h a n n o n ' s   s e c o n d   t h e o r e m .  
In real channels the velocity V I ,  and even  more so Vz (3.47), cannot  be at- 
tained, and  we still do  not  know  what improvements are  necessary to at- 
tain  these  rates of information transmission. 
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Chapter  IV 

STATISTICAL METHODS FOR  THE  ANALYSIS 
OF  AUTOMATIC-CONTROL S Y S T E M S  

Automatic  -control  systems  are  generally  designed  assuming a sinusoidal, 
step, or pulse input signal.  The  complexity of cybernetic  systems and the 
great  variety of their  operating  conditions  require  methods of design  for  en- 
suring  their  response to  arbitrary  signals whose shape is not known in a d -  
vance.  These  systems and their  behavior  are  therefore  studied and  analyzed 
using  probability  theory  and s t a t  i s t i c a 1 methods. 

A s  a measure of e r r o r  in  systems  studied by statistical  methods we often 
take  the m e a n   s q u a r e   e r r o r ,  defined  bythe  equation 

( t )  --u~(t)jgdf, 
T+- -r 

(4.1) 

where ud(f)  = the  desired  (continuous) output signal; 
ul(t)  = the  actual  (continuous)  output  signal; 

eP& ( t )  - u 2 ( t ) =  the  output e r r o r  of the  system; 
T = the  relevant  period. 

Another  parameter  characterizing  the  operation of the  system is the 
simple m e a n   e r r o r  

T 

When the  mean  error  is used as a measure of the  system  operation,  in- 
dividual e r r o r s  introduced by the  different  values of the  random  variable 
are  averaged  according  to  their  magnitude. 

in a system  optimized  relative  to k the   large  errors   are   reduced at the  ex- 
pense of a slight  increase of the  small  erro-*s. In other  words, in this   case 
the  larger   the  error ,   the   greater  its significance  in  calculations. 

is to minimize  the  mean  sqlare  ( in  most  cases) or some  other   error .  

Introduction of the  concept of mean  square  error   leads  to   the following: 

The  object of statistical  analysis of cybernetic  automatic-control  systems 
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1. TRANSFER  FUNCTIONS AND TIME RESPONSE OF 
AUTOMATIC  -CONTROL  SYSTEMS 

The t r a n s f e r   f u n c t i o n s  and t i m e   r e s p o n s e  of a   system  are  
characteristics  for  determining  the  system-output  function, when  the  input 
function i s  known. 

cribed  by its time  response. If the  signals  are  functions of the  complex 
frequency s, the  system is specified by its  transfer  function. We shallnow 
consider  the  properties of these  functions  and  the  technique  for  their  de- 
termination. 

t ime u ( t )  is a function  u(s)defined a s  

If the  input  and  output signals are  functions of t ime t ,  the  system is des- 

We remind  the  reader  that  the L a p l  a c e t r a n  s f o r m of a  function of 

In the  Laplace  transform  the  time t is   replaced by the  c o m p l  e  x f r e - 
q u e n c y  

s=a+jo, (4.4) 

where (I = the  real  part of the  complex  frequency; 
o = the  imaginary  part of this  frequency. 

The  inverse  transformation is obtained  by  solving (4.3) for u( f ) :  

The  Laplace  transform  applies  the  highly  developed  tools of the  theory 
of functions of a  complex  variable  to  the  analysis of automatic-control  sys- 
tems.  This  transformation  enables  differentiation  to be replaced with mul- 
tiplication by the  complex  frequency 

- + sV(s) .  da 
dt 

Differential  equations a r e  reduced  to  algebraic  equations,  greatly  simpli- 
fying  the  solution of various  problems. 

E x a m p l  e . Find  the  equation  for  the  current  in  the  circuit of Figure 
4.1 when the  switch i s  closed ( R  and L are  constants).  

FlGURE 4. 1. R-L  circuir. 
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This  circuit is described by the  following  equation: 

u-Ri+L-.  dl dt 

To find  the  current, we have  to  solve  this  differential  equation.  If, how- 
ever,  the  equation is rewritten with  the  Laplace  transforms for the  current 
i and  voltage u [I(s) and u(s)respectively 1, we obtain 

O(S) =Rl(s) +sLI(s). 

This   is  a simple  algebraic  equation.  The  current (or rather  its  Laplace 
transform) is determined as the  quotient 

Since  the  voltage u is constant, its transform is equal  to 

U(s)  = -n. 1 
S 

Hence 

where T- -1s the  time  constant of the  circuit L .  
R 

From  tables of Laplace  transforms we find the  inverse  function 

Statistical  theory  covers  the  entire  range of the  function u ( f )  from f=--bD 
tof=-bD. Wethereforeintroduce  the b i l a t e r a l   L a p l a c e   t r a n s f o r m  
which,  in  distinction  from  the  ordinary,  unilateral  transform (4.3), is 
defined a s  

The  right-hand  side of this  equation  can  be  written a s  a sum of two com- 
ponents: 
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Substituting a variable r-"t in  the first integral w e  obtain 

0 

The  bilateral  Laplace  transform of a function  u(t),b~>f>--is  thus  sep- 

In the  right  integral of equation (4.8). we find  the  ordinary  unilateral 

Then, in the left integral of equation (4.8 1, we find  the  unilateral  Laplace 

arated  into two parts.  

Laplace  transform (4.3) of the  function u ( t )  defined  for t>O.  

transform of the mirror  image of the  function u ( f )  (Figure 4 . 2 )  and reverse 
the  sign of the  complex  frequency  in  the  transform  obtained. 

FIGURE 4. 2. Mirror image (right) of the inverse function (left), 

The  sum of these two unilateral  transforms  gives  the  bilateral  Laplace 

E x a m  p l  e . Find  the  bilateral  Laplace  transform of the  function 
transform of the  function u ( t )  

up) = e"'; ( t<O) ;  e-*'; ( 0 0 ) .  

We first  determine  the  unilateral  Laplace  transform of the  function 
ea defined  for f > O .  Using  the  Laplace-transform  tables, we find 

1 U,(s)=- s+b ' 

The  second  component i s  determined  as  follows: 
a )  the  sign of t in u ( t )  is reversed (we obtain  the mirror   image of the 

function u ( t )  for t<O): 

&--e 
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b)  the  Laplace  transform of the  mirror   image of the  function is accord- 
ing  to (4. 3 ): 

e&". 1 
s+u ' 

c )  we change  the  sign of the  complex  frequency and  obtain 

1 1 
U2(s) = "s+a- -". s-a 

The  bilateral  Laplace  transform  is  thus  equal to  

1 1 
s+b s--a U(s)= U,(s)  +U2(s)=- - -. 

In the  complex  plane (s) the  automatic-control  system is described by a 
t r a n  s f e r f u n  c t i o n  which i s  defined as the  ratio of the  Laplace  trans - 
form of the  system's output  function to  the  Laplace  transform of the input 
function, with zero  initial  conditions: 

Note tha t  this  function is independent of the  shape of the input signal and 
is therefore  suitable  for  statistical  calculations.  The  transfer  function  va- 
ries with complex  frequency (s=u+jo) and is  plotted as a plane  curve with 
coordinates u (the  real axis) and io (the  imaginary  axis). 

If  we set  in (4 .9)  s = j o ,  we obtainthe p h a s e - a m p  1 i t  u d e response of 
the  system: 

(4.10) 

The  substitution of the  imaginary  frequency jo for  the  complex  frequency 
s (is  equivalent  (see  equation  (4.4))to  settingthe  real  frequency  component u 
equal  to  zero.  Hence, t h e  phase-amplitude  response is a particular  case of 
the  transfer  function  tracing its variation  along  the  imaginary  frequency 
axis (u=O). The  term  "phase  amplitude" is derived  from  the  fact  that when 
a sine  signal  is fed  into  the  system  this  response  function  gives  the  phase 
shift and  the  amplitude of the output  voltage, with respect  to  the input sine 
signal. 

If the  phase-amplitude  response is known, then  substituting s for  jo we 
obtain  the  transfer  function. 

The  phase-amplitude  response  can be written  in a somewhat  modified 
form 

( 4 . 1 1 )  

1 3 0  



B~(o) and &(o) = the real and  the  imaginary  components of the  phase - 
The  parameter A (0) is often  called  the a m p  1 i t  u  d e - f r e q u e  n c y 

amplitude  response. 

r e s p o n s e  and o ( o ) t h e   p h a s e - f r e q u e n c y   r e s p o n s e .  

function  and  the  frequency  response. 
Let us  now consider  an  example  in  the  determination of the  transfer 

Find  the  transfer  function  for a d-c  generator  (Figure 4.3). 
For   the  winding of this  generator we have 

FIGURE 4. 3. Circuit of a d-c generator. 

The  Laplace  tranform of this  equation  is 

U~(S) (R+sL)II(s).  

Neglecting  saturation of the  magnetic  circuit of the  generator, we write 

or &(s) =kfI(s), 
where k is a constant. 

Then, 

U 1 ( S )  = x (R+st ) t l , ( s ) ,  1 

whence the  transfer function 

Setting s = j o  we obtain  the  open-loop  frequency  response  function 

Using (4 .  l l) ,  we write  this  expression  in t h e  form 

(4.12) 

. oT 
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In Figure 4.4 we see that  this  function is a  semicircle with its center  at 
1 k  &(o) - x and j & b )  10. 

FIGURE 4.4. Complex  plane  plot  of frequency  response. 

Ifthe  automatic-control  system is closed (Figure 4. 5), we may  write 

%(s) SUI (SI -&Ua(s), 

where &f is the  feedback  transfer  coefficient. 

in Figure 4.3. Therefore,  from (4.12), 
It is easyto  see  that   the  signal uh in Figure 4.4  is analogous  in its effect  to u, 

FIGURE 4. 5. Closed-loop  automatic-control  system. 

Solving these  equations  simultaneously, we obtain 
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whence we readily  determine  the  transfer  function of a closed-loop  system: 

Ingenera1,the t r a n s f e r   f u n c t i o n   o f  a c l o s e d - l o o p   s y s t e m  
is obtained  by  inserting  into  this  equation  (see  (4.13)) 

Gf (s) =Rf andG(s) - -- k 
R+sL ’ 

this  yields 

(4.14) 

where Gf (s) is the  feedback  transfer  function. 
A l l  automatic-control  systems,  except  for  programed  systems, are 

closed-loop  and  have  one or  more  feedback  loops. 
In most  cases  automatic-control  systems  are  studied in thecomplex 

plane.  In  some  cases,  however,  it  is  convenient  to  make  the  analysis  in  the 
plane of the  real  variable t .  We shall now therefore  consider  the  relation- 
ships  describing  the  system  along  the  time  axis. 

function: 
Applying (4. 5), we  find  the  inverse  Laplace  transform  for  the  transfer 

The  functions g(f) and G(s) are  also  related by  the  equation (4 .3)  

(4. 15)  

(4.16) 

The  parameter g( t )  is generally  called  the i m p u l  s e t i m  e r e  s p o n  s e 
of the  system. It follows  from  equations (4. 15) and (4. 16) that  the  impulse 
time  response and the  impulse  transfer  function are related by Laplace 
transformation 

and characterize  the  system  in  the  time  and  the  frequency  domains,  res- 
pectively. 

transform (4.5): 
The  output  voltage of the  system  can  be  determined  from  the  Laplace 

k 
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FlGURE 4. 6. lrnpulse  (left) and unit-step  (right)  functions. 

Since  from  (4.9) 

we have 

In  the  particular  case (s) = 1 we have 

u2== G(s)e*&. li (4. 17) 
" j  

Comparing  equations (4. 15)  and (4. 17) we come  to  the  following  conclusion: 
the  impulse  time  response of the  system g(fJ is equal  to  the  output  signal Us 
when the  input of the  system is a  signal whose  Laplace  transform is 14. 

Without  proof we observe  that  the  function whose  Laplace  transform is 1 
is called  an i m p u l s e  or d e l t a - f u n c t i o n .  

The  impulse  time  response g ( f )  of an  automatic-control  system is equal 
to  the  output  signal when the  input of the  system is the  impulse  function i3(f). 

The  impulse  function  has  the  following  property:  at f -0 it is infinite,  and 
at  all other  time  points it is zero: 

= (0 ( f # O ) .  
(t-0). (4.18) 

Moreover,  the  area  described by the  impulse  function is 

y b ( f ) l i f = l .  
-OD 

The  theory of automatic  control  often  makes  use of t h e   u n i t  - s t e p 
f u n c t i o n .   T h i s  function  (Figure 4 . 6 )  is defined as 1  for  f > O  and 0 fo r  
f < O :  

(4.19) 
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The  relationship  between  the  unit-step and  the  impulse  function  becomes 
evident when we differentiate  the  unit-step  function: 

(4.20) 

We have  shown  previously  that  the  impulse  time  response g ( t )  is equal  to 
the  system-output  signal when the input of the  system is the  impulse  func- 
tion.  Similarly,  a u n i t - s t e p   t i m e   r e s p o n s e  (or,  more  briefly,  a 
u n i t   - s t e p  r e s  p o n s  e ) h ( f )  is introduced  which is equal  to  the  output 
signal of a  system  whose  input is the  unit-step  function.  It  follows  from 
(4.20)  that  these  two  time  responses  are  related by  the  equation 

When the  impulse  function is applied  to  a  system, its output is g(f) .  What 

We first find  the  bilateral  Laplace  transform  for an arbi t rary input func- 
will  be  the  output of a system whose  input is an  arbitrary  signal  curve ? 

tion ul(f). It  follows  from (4. 7 )  that 

where a is  introduced  as  a  real  time  variable  since  later on several   t ime 
variables wil l  be  required. 

impulse  time  response is 
It moreover  follows  from (4. 16) that  the  bilateral  Laplace  transform  forthe 

(4.21b) 

where T is another  real  time  variable. 

output  function: 
Inserting U,(S) and G ( s )  into (4 .9)  we obtain  the  Laplace  transform of the 

8 m 

~ ~ ( s ) = ~ ( s ) ~ , ( s ) = / g ( r ) e - . r d s /  UJ(u)e-mdu= 
4 4 

m W 

= g (r) dr 1 Ut (a) &*')de. 
-00 -9 

In  the  right-hand  integral w e  introduce  a new time  variable 

then 

Thus, 

# =do. 
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Changing  the o rde r  of integration, we write 

Comparing  this  equation with (4. 71, we obtain 

m 

u2(0 - 1 4V-%?oW. 
"0 

(4.22 1 

This  integral  can be interpreted  as  follows.  The  continuous input  func- 
tion ul( t )  is resolved  into  an  infinite  number of impulses, and  the  integral 
sums  the  output  signals  produced, when these  impulses  are  applied  to  the 
input. 

Equation 4.22 is correspondingly  called  the  c  on  vo 1 u t  i o n i n t e g r a 1. 
We have  previously shown  in (4.9) that  in  the  complex-frequency  domain 

the  output  signal is determined as the  product of the input  function  and  the 
transfer  function 

In  the  time  domain  this  signal is determined by the  convolution  integral. 
We therefore  say  that  multiplication  in  the  frequency  domain is equivalent 
to  convolution  in  the  time  domain. 

It is noteworthy  that  both ? and t in  the  convolution  integral  denote  time. 
However, t is the  time  specifying  the  variation of the  function ul( t ) ,  whereas 
r is the  time  characterizing  the  shift of each of the  infinite  number of com- 
ponent  impulses of this  function  relative  to  the  ordinate axis. In  computing 
the  convolution  integral, ? is considered  as  the  variable,  and  the  time 1 is 
constant,  since  integration is performed by summing  the  impulses  over t. 

2. CORRELATION  FUNCTIONS 

We have  already  indicated  that, in most  cases,  the  object of statistical 

We insert  into (4. 1) the  output  function (4.22). Hence 
analysis is to  minimize  the  mean  square  error (4.1). 

Squaring  the  expression  in  brackets, we obtain 
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where u is a new time  variable  to  be  distinguished  from T .  
The  mean  square  error is thus  represented by three  terms: 

In  the  second  and  the  third  terms w e  change  the  order of integration  and 
transition  to  the  limit.  Then 

t 

We introduce  the following  concepts: 
a )   a u t o c o r r e l a t i o n   f u n c t i o n  of the input signal: 

b) a u t o c o r r e l a t i o n   f u n c t i o n  of the  output  (the  actual  and  the 
desired)  signals : 

(4.25) 
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c )  c r o s s  - c o r r e l a t i o n   f u n c t i o n  of the  input and the output sig- 
nals : 

t 1 

t I (4 .26 )  

The  sign of T in the  integral is of no consequence  and  can  be  chosen ar- 

It  is  easyto  see  that  the c o r r e l a t i o n   f u n c t i o n  is the  average  prod- 
bitrarily  (plus or minus). 

uct  over  a  period of t ime t of two  functions,  shifted  one  relative  to  the  other 
by +T seconds. 

Inserting  the  correlation  functions  into  (4.23) we obtain 

oo 

e 2 = q d d  (0) -2  I 'Pld(T)g(T)dr+ 
a 

where (Pdd (0)is  the  autocorrelation  function  at ~ - 0 .  Thus,  the  mean  square 
e r r o r  depends on the  impulse  time  response and  the  correlation  functions. 

Note that when the  impulse  time  response is known, the  correlation  func- 
tions  can  be  expressed  one  in  terms of the  other.  Let  us  consider  these re- 
lationships. If an  arbitrary  signal is applied  to  the  input,  the  output  signal 
from  equation  (4.22) is equal  to 

a 

UZ(t) = /ul(t-u)g(o)du, 
"0 

where (I and f are  time  variables. 
Multiplying  the  two  sides of this  equation by u,(t-?), we obtain 

W 

ul( f -~)u2(f )=uI( f -T)  /u l ( f -o)g(a)du.  
90 

We now take  the  m  e a n  of the  two  sides of the  equation, i. e . ,  find  the 
limit of these  integrals: 

t 

The  left-hand  side of this  equation,  according  to  (4.26), is the c ros s -  
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correlation  function.  Therefore,  seeing  that cpl(T) ==p12(~), we can  write  the 
above  equation  in  the  following  form: 

Changing  the o rde r  of integration, we obtain 

The  expression  in  brackets,  according  to (4.24). is an  autocorrelation 
function of the  argument T-u. Therefore 

em 

S S ( T )  mJ TU (T-a)g(o)du- -.. 

Since  in  this  equation T and u are  t ime  variables,  T can be  replaced by 
the  more  common t :  

m 

(4.28) 

Thus,  giventhe  impulse  time  response of a system, we can  obtain  the  cross- 
correlation  function  from  the  autocorrelation  function of the  input  signal. 

tions of the  input  and  output  signals. 
We further  determine  the  relationship  between  the  autocorrelation func- 

The  autocorrelation  function of the  output  signal is from  equation (4 .25)  

T 

From (4 .22)  we write 

where a and q are  t ime  variables.  
Inserting u2( t )  and uZ(t+s) into  the  preceding  equation, we obtain 
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Changing  the  order of integration, we write 

r 
( P ~ z )  ={g(a)durg(q)dqlim&J ul(t+z"q)ul(t-u)dt. 

-00 
T- 

-Qo "I 

Since  from  (4.24) 

we have 

(4.29) 

T h i s  expression  establishes  the  relationship  between  the  input and the output 
autocorrelation  functions. 

Let us  consider  some  properties of correlation  functions. 
a)  An autocorrelation  function at r=O c h a r a c t e r i z e s   t h e  a v  e r a g  e 

p o we  r of the  function.  Indeed,  let u( t )  be a voltage  applied  to a 1 res i s  - 
tor.  The  autocorrelation  functions  equations  (4.24)and  (4.25)thengivethe  in- 
put  and the output  power. 

tions are expressed as follows: 
b) /qll (r)I<qll (0). Let us prove  this  inequality.  The  product of two func- 

t t 

Using  the  notations of (4.24), we write 

o r  
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Since  the  second  term  in  the  right-hand  side is always  positive  (the  integral 
is squared),  the  absolute  value of cpll(r)  is always  smaller  than qll(0). 

c )  If ~ ( t )  contains  a  periodic o r  a constant  component,  the  autocorrelation 
function also contains  a  periodic o r  a  constant  component.  This  follows  from 
the  very  definition of correlation  functions. 

d) If ul( t )  is a random  function,  the  cross-correlation  function pn(r)+O 
when -00, since  as r increases  the  functions u l ( t )  and uz(t) become  inde- 
pendent. 

time  functions, but to a given time  function  corresponds  a  single  autocor- 
relation  function.  This is so, because  the  autocorrelation  function is the 
mean of a  function of time. 

Let  us now consider  a  technique  for  determining  correlation  functions 
using  computing  facilities. A block  diagram of a  correlation  computor is 
shown  in  Figure 4.7 .  

e )  To a given  autocorrelation  function  corresponds  an  infinite  number of 

y l y a  ~- Multiplier I I 
Cm 

Integrator 

- 

FIGURE 4. I .  Correlation  cornputor. 

This  computor  uses  analog  devices and has two  inputs:  one  for  the  input 
signal ul( t ) ,  and one  for  the  output  signal ~ ( t ) .  Signal u¶(t) is passed  through 
a time-lag  unit which produces a phase  shift of T seconds.  The  simplest 
time-lag  unit is a magnetic  tape  with two read and write  heads. If the  speed 

of the  tape is V- , the  distance  between  the  heads is cm 
sec 

I=Vs[cm]. 

Multiplication of the  functions a ( f )  and %(f--s)  and  integration of the 
product  gives,  according  to (4.261, the  cross-correlation  function. If the 
same  signal is applied  to  the  two  inputs,  the  output is the  autocorrelation 
function of this  signal. 

This  facility is known to  be  inadequate when the  integration  limit r-00. 
Therefore,  in  accordance with the l aw of large  numbers,  integration is 
made  over  a  sufficiently  large  time  period.  The  multiplier  used in this fa; 
cility  should  transmit  high  frequencies.  Otherwise it will introduce  a  large 
e r r o r  in  the  determination of the  correlation function. 

A circuit  analogous  to  that in Figure 4 . 7  can  be  designed  using  digital 
devices, which perform  numerical  integration of the  product of functions. 

When the  mathematical  description of the  functions ul(t) and #&) is given, 
the  corresponding  correlation  functions  can also be determined  from  equa- 
tions (4.24).  (4.25). and (4.26). 
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E x a m  p 1 e . Find  the  autocorrelation  function  for  the  sine  function 

u, (t)  ==u,sin (ot+q)). 

According  to (4.24).  we write 

Since ul( t )  is a  periodic  function, it suffices  to  integrate  over one period 
only: 

r 

Since u, = const  and T- - 2x we find 
0 '  

%% - 
( T )  = 2; u', sin(ot+tp) sin(ot+q+r)dt. 8 

0 i 
Let 

Then de-dt  and 

@=ut +cp. 

whence,  integrating, we obtain 

I 
tpu (r) = h u; cos ?. (4. 30)  

The  autocorrelation  function of a  sine  function is thus  a  cosine  function 
which is independent of the  origin of the  time  scale  (the  angle tp). 

A method  recently  developed  uses  noise  (generally  considered  an  inter- 
ference)  for  determining  the  impulse  time  response g ( t )  of a  system.  This 
method is  particularly  valuable,  as  the  response of the  system  can  be  de- 
termined without  switching it off,  and  during  its  normal  operation.  Let us 
analyze  this  method. 

W h i t  e n o  i s e - a  perfectly  random  function  (voltage) which is char-  
acterized by the  lack of any  correlation  whatsoever  between  its  consecutive 
values-is  fed  into  the  system.  The  autocorrelation  function of white  noise 
u r , ( f )  is zero  at  all ?, with the  exception of ?PO, where  the  random  function 
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is multiplied by itself (see  (4.24)).  The  autocorrelation  function of white 
noise is therefore  the  impulse  (or  delta)  function. 

by  (4.22): 
The  relationship  between  the  input and the output  functions is determined 

(4.  31a) 

If now, to  facilitate  comparison,  the  variables 'F and f are  interchanged 
in  (4.28), we obtain 

(4. 31b) 

In  the  previous  section we showed  that if the  impulse  function 

is fed to  the  input of a  system, (4. 31a) is considerably  simplified,  and  the 
output signal  becomes  equal  to  the  impulse  time  response: 

W )  -Ai). 
Since (4. 31a)  has  the  same  form  as (4. 31b), we come  to  the  following 

conclusion. If a  signal (white noise) whose autocorrelation  function is the 
impulse  fimction 

is fed  to  the  input,  the  cross-correlation  function of the  input  and  the  output 
is equal  to  the  impulse  time  response of the  system: 

We thus  have  the  possibility of designing  a  circuit  (Figure  4.8)  for  deter- 
mining  the  impulse  time  response of the  system. 

Let  us  analyze  the  operation of the  circuit shown  in  Figure  4.8. 
White  noise ru l ( f )  from  a  special  generator is delivered  simultaneously 

to  the  system  input,  and  to  a  time-lag  unit.  The  time-lag  unit  produces  a 
phase  shift of ? sec in rul(f). When the  noise  has  passed  through  the  system, 
signal ut&) is produced  at  the  output.  The  functions ul(f--s) and  urz(f)are 
fed  into  a  correlation  computor which produces  an  output  signal  equal  to  the 
impulse  time  response g(t)  of the  system. 

If the  input of the  system  consists not  only of white  noise,  but  also of the 
signal & ( f ) ,  the  computor  receives  the sum of the  signals 

urt(t) +ut(t), 
where ut(f) is the  output  produced by the  system when the signal u l ( f )  has 
passed  through. But the  cross-correlation  function of ul( f )  and ur(f) is zero, 
since K l ( f )  is not  fed  into  the.  computor,  and its signal is therefore  zero. 
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Time-lag  unit 

FlGURE 4. 8. Circuit for determining the impulse  time  response of a system. 

The  circuit  in  Figure 4.8 thus  enables  us  to  determine  the  impulse  time 
response of a system  for  any  external  input  signal u l ( f ) .  It is therefore  pos- 
sible  to  measure g ( f )  directly  during  operation, without  switching off the 
system.  Moreover,  external  noise  introduced  into  the  system o r  generated 
in  it  does not affect  the  measurements of g ( f ) ,  since  it  introduces no e r r o r s .  

In minimizing  the  mean  square  error ( 4 . 2 7 )  of a system,  the  correlation 
functions  are  used  to  describe  the  signals fed  into  the  system and i ts   be-  
havior  in  time.  Forming  the  bilateral  Laplace  transform (4. 7 )  of the  cor- 
relation  functions, we obtain  the  characteristic  responses  jn  the  complex- 
frequency  domain: 

a 

m I @ I 1  (4 = (+-% 
“-QD 

OII(s) is not the  only  Laplace  tran6fOrm of the  autocorrelation  function; 
this  function  in its own right  gives a very  important  frequency  response.  Let 
us  consider  this  property of @11(s). 

Any continuous  function  u(f)can  be  expanded  in  any  finite  interval (T) into 
F o u r i e r s e r i e s , representing a sum of individual  harmonics  (sine  and 
cosine  curves of different  amplitudes  and  frequencies): 

u(f)~~+a,cosot+azcos20f+ ... +a,cosnot+...+ 

+b1 sin o f + b ~  sin2ot +... +basinnot+.  .. , (4.33) 

where 
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The  complex  Fourier  series is written  in a somewhat  different  form: 

where 

(4.35) 

It  follows  from (4. 34) that  function  u(t)can  be  represented  as  an  infinite 
discrete   ser ies  of harmonics  whose  amplitudes  are  determined by (4.35). 

Let a voltage u( t )  be  applied  to  a  circuit  with  resistance R .  Each  har- 
monic  component of this  voltage  causes  to  dissipate  in a resis tor  RI an 
amount of energy  equal  to 

Since  the  spectrum of the  voltage  function u ( f ) i s d l c r e t e .  (4. 34)we say that 
energy  in  signal u ( t )  is concentrated  at  discrete  (individual)  frequencies. 

It  follows  from (4. 35)  that  the  frequency as a function of the  harmonic 
amplitudes  (the  a rn p 1 i t  u  d  e s p  e  c t r u m ) is represented by a  discrete 
curve  (Figure 4.9), and is defined  only at points  where n is an  integer, 

FIGURE 4. 9. Discrere  amplitude  spectrum. 

Until now  we have  considered  the  expansion of the  u(t)curve in the  time 
interval t .  If, for  a periodic  curve,  this  interval is taken  equal  to  the  period 
of the  function,  the  curve will repeat  itself  outside  this  interval.  It is there-  
for  exactly  specified by its discrete  spectrum. 

Aperiodic  functions, on the  other  hand, are approximated (with a certain 
e r r o r )  by a discrete  spectrum  in an interval of T seconds. To reduce  this 
error,   the  interval T must  be  increased.  In  the  limit, when T-m, the 
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error   vanishes ,  and  the  Fourier series of equation (4.34) reduces  to  the 
F o u r i e r   i n t e g r a l :  

where 

(4.36) 

The  continuous  function  u(jo)is  the  limit of the  discrete  sequence u,,(jo) 
(equation (4.35) and  Figure  4.9)as  the  difference  between  these  values  ap- 
proaches  zero.  It  follows  from (4.37) that  in  this  case  the  voltage u(f) has 
a continuous  spectrum of harmonics  and  the  energy  content of the  function 
u(f) is continuously  distributed  over  the  entire  frequency  range. 

In the  discrete  spectrum,  the  function u,(jo) describes  the  frequency  as 
a function of the a m p  1 i t  u  d e s of the  harmonics,  whereas  inrhe  continuous 
spectrum  the  function  u(jo)describes  the  frequency  dependence of the a m  - 
p 1 i t  u  d e d e n s  i t  y of the  harmonics (i. e.,  the  ratio of the  amplitudes  to 
an  infinitesimal  frequency  interval)  (Figure 4,lO). W e  have  already  encoun- 
tered  a  similar phenomenon  in our  analysis of the  differential  probability- 
distribution  function  (see  page 106). There,  the  transition  from  a  discrete 
to  a  continuous  function  resulted  in a switch  from  probability  to  probability 
density,  defined  as  the  ratio of probability  to  an  infinitesimal  signal  interval. 

Let  us now find  the  direct  relationship of ell($) (4. 32) with a signal ul(f),  
whose  autocorrelation  function vu(%) is known. 

F rom (4.24) 

f 

FIGURE 4.10. Amplitude  density of a continuous  spectrum. 
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Inserting ~ 1 1  (r) into (4. 32), we obtain 

Changing  the  order of integration, we write 

f 

Proceeding  from  the  law of large  numbers, we substitute  finite  limits  for 
the  infinite  limits of integration ( T  is sufficiently  large).  Then 

Changing  the  variable r to  a=t+q, so  that da-dr and  noting  that a s  
T-.m.fT+t=fT,  we obtain 

o r  

The two integrals  are  conjugate.  Therefore 

o r  

(4.38) 

(4.39) 

It  follows  from (4. 37) that  the  right-hand  side of (4. 39) is proportional 
to  the  square of the  amplitude  density.  The  function Ol1(jo) is therefore  cal-  
l e d   t h e   s p e c t r a l   p o w e r   d e n s i t y .  It is easy  to  see  that @11(jo) is 
a real  function of the  square of frequency (d). 

and an  aperiodic  signal by a continuous  amplitude-density  spectrum; a ran-  
dom  signal,  on  the  other  hand, is characterized by spectral  power  density. 

A periodic  signal is thus  characterized by a discrete  amplitude  spectrum. 
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Spectral  density  can also characterize  the  distribution of power  in  the 
frequency  spectrum of periodic  and  aperiodic  signals. 

The  function @ll(jo) gives  the  distribution of power  density  over  the  en- 
tire harmonics  spectrum.  The  power  dissipated  on a resis tor  R-1 R by 
harmonics  having  frequencies  from 01 to  02 is therefore  determined  by  the 
integral 

(4.40) 

The  total  power  content of the  signal ul(f) (i. e., the  powertransmitted by 
all the  frequencies) is equal  to 

m 

It  should  be  remembered  that @ll(jo) is a  response  specifying  the  spec- 
tral  power  density of the  signal ul(f). It  contains no amplitude  frequency 
responses. 

s p e c t r a l   p o w e r   d e n s i t y .  

domain  the  input  and  the  output  signals of a  system  are  related by the  ex- 
pression 

By analogy with @ll(jo), the  function @12(io) (4. 32) is called  the  c r o  s 8 

W e  have  previously  shown  in  equation  (4.lO)that  inthe  complex-frequency 

An analogous  relationship in the  time  domain  was  given by the  convolution 
integral  (4.22): 

0 

&(T) a /&(z-t)g(t)dt- 

Correlation  functions  in  the  time  domain  have  the  same  general  form 
(see eqbation  (4.28)): 

Laplace  transforms of the  correlation  functions  are  therefore  also re- 
lated  by  the  dependence 

@ r o ( i o ) ~ G ( j ~ ) @ ~ ~ ( j ~ ) .  (4.42) 

Let  us now determine  a  relationship  between  the  spectral  densities of the 
input [@ll(jo)] and  output [@p(jo)] signals. 



Inserting  the  autocorrelation  function of the  output  signal  from (4.29) 
into (4.32). we obtain 

a a  

= / dz/ g(a)&X 
-0.- 

a 

X Je-w*)e'He-h cpll(r+u--q)g(q)dq. - 
Changing  the  order of integration, we have 

Q 0 

G W ~ )  - J g(q)e"qhJ s(u)+hx 

x J cpll(r+u-q)e---"- hr 

-... -4 

00 

-0 

Substituting 10 for  s in (4.16) and considering  the  entire  time  range 
(=>t>--m), we write 

a 

G(jo) ==Jg(f)e+dt. 
4 

The  preceding  equation  can  therefore  be  rewritten as 

@~(jm)=G( j~)G( - io)  / T I I ( M ~ - ~ ,  

- 
-.. 

where i-ri-u-q; 
d k - h .  

Since  the  last  integral is in  fact  the  spectral  power  density of the input 
signal (4. 32). the  equation  relating  the  spectral  densities of the  input and 
the  output  signals  can  therefore be written as 

where JG(fo)P-G(.I~)G(-jo).  

w- - Harmonic - 
Integrator R-1 R 

analyzer 

FIGURE 4. 11. Circuit for the  determination of the  spectral power density. 
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The  spectral  power  density of the  input  signal @ ~ ~ ( j o )  can  be  directly  de- 
termined by  experiment.  Since @ll( io)  is equal  to  the  power of the  signal 
u l ( f )  at frequencies  between o and o+do, the  density  can  be  determined  as 
follows. 

The  random  function  in  question, ( f )  , is fed  into  a  harmonic  analyzer 
(Figure 4. 11). This  device is a  narrow-band filter admitting  only  a  small 
spectrum of harmonics.  Since  the  transmissfon b-ild is nevertheless not 
infinitesimal,  the output of the  analyzer is fed  into  an  integrator which aver-  
ages  out  the  harmonics  spectrum.  The  output of the  integrator is coupled 
to  a  resistance R-I 0 . A wattmeter ( B )  measures  the  power  dissipated  in 
the  resistor  in  this  frequency band. The  power  measured  gives  a  point on 
the @ I I ( ~ o )  curve.  Returning  the  analyzer, we determine  in  this way several  
points  for  plotting  the  curve @ll(jo)=f(o). 

When the  voltage ul( i )  is given  analytically,  the  spectral  power  density 
can  be  computed  from  equations (4. 32)  o r  (4. 39). 

A s  we have  previously  shown,  the  autocorrelation  function of white  noise 
is the  impulse  function 

cp&) = w .  
Therefore,  inserting 'pll (?) into (4. 32). we obtain 

C d 

FIGURE 4. 12. Spectral power density: a-white  noise: b-constant signal;  c-period- 
i c  signal; d-random signal. 

(4.44) 
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Integrating, we find 

Different types of spectral  densities  for  the  most  common  functions  are 
shown in  Figure 4.12. We see  from  this  figure  that  the  spectral  power  den- 
si ty of white  noise is a  horizontal  straight  line with ordinate 1. The  spec- 
tral  power  density of a constant  signal is represented  by  the  impulse  func- 

tion  at  the  origin. Two impulse  functions  at  the  abscissas m0=* - char-  

acterize  a  periodic  sinusoidal  signal with frequency 00. 
2x 
T 

The  spectral  power  density, @ll(fo), of a random  signal is asmoothcurve.  

3 .  MINIMIZING THE MEAN  SQUARE ERROR 

The  principal  problem  encountered  in  the  design of automatic-control 
systems is the  design of a  system (how to  choose G(s) or   g( t ) )whose  mean 
square  error   a t   the  output  will be minimized. 

The  mean  square  error  can be determined  from  the  impulse  time res- 
ponse  and  the  correlation  functions  (see (4.27)). It is, however,  muchsimp- 
ler  to  determine  this  error  from  the  transfer  functions of the  system  in  the 
complex-frequency  domain.  It  should  be  kept  in  mind  that  the  mean  square 
e r ror   cons is t s  of two  components:  errors  arising  in  the  transmission of 
noise url(t) through  the  systems and e r r o r s  in the  transmission of the  mean- 
ingful  signal ul(t). Since we are  concerned with l inear   systems only,  each 
of the  component errors  can  be  computed  separately. We shall therefore 
consider two cases  of system  operation, with noise and  meaningful  signal 
fed  separately  into  the  system. 

a)  Transmission of noise 

In this  case  (Figure 4. 13)  noise  only is fed  into  the  sytem [ u l ( f ) ] .  The 
output  signal ~ ( t )  is obviously  meaningless  and  thus  constitutes  an  error. 

FIGURE 4. 13. Transmission of noise. 

The  total  power of the  output  signal,  and  hence  the  mean  square e r r o r  is, 
from  equation (4.41), equal  to 
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where en,,, is the  spectral  power  density of the  output  noise. 

from (4.43), we obtain 
Inserting  the  expression  for  spectral  power  density of the  output  signal 

(4.45) 

where Rh (io) is the  spectral  power  densityof  the input  noise. 

b )   E r ro r  in transmission of meaningful  signal 

This   e r ror   a r i ses   f rom two  sources. First, the  system  available  may 
process  the  signal  somewhat  differently  from  the  initial  specifications  and, 
second,  the  system  may  differ  from  the  optimum if  the  mean  square  error 
is to  be  minimized. 

It is convenient  to  use  the  circuit  shown in Figure 4.14 for  the  analysis 
of the e r ro r   a r i s ing  in  the  transmission of a  meaningful  signal.  This  cir- 
cuit  gives  the  error  as  a  difference of signals  at  the  outputs of two  systems: 

e( t )  = u d  (1) -uS(t)- (4.46) 

One of these  systems is the  physically  available  real  systemG(s), g(t), 

From (4.22), the  output  signal of the real system is 
and  the  other is the  desired  system G d  (s), g d  ( t ) .  

0. 

u4t) +I (t-r)g(W. 
-a 

Similarly,  the output  signal of the  desired  system is 

W 

ud ( t )  a UI (f-7) g d  (r) &. 
-00 

Inserting  signals uz(t) and a d  ( t )  into (4.461, we obtain 

W 

d r )  I uI (f-r)[&d (r) -g(r)ldr- 
-00 

The  error  e(f)can  thus be  considered  (Figure 4.15)  as the output signal 
of  a  conditional  system (Gd (s) -G(s);g, ( f )  -g ( t )k  whose  input is the  mean- 
ingful  signal u l ( f ) .  The  mean  square  error  arising  in  the  transmission of 
a meaningful  signal  can  thus  be  determined  as  the  integral  power of the  sig- 
nal  produced  at  the output of the  conditional  system.  Therefore,  similar  to 
(4.45), we obtain 

e,' = - k f i o d  &) -G(b)P@h U@)k (4.47) 

-OD 
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where G d  vu) = the  frequency  response of the  desired  system; 
0 (jo) = the  frequency  response of the real system; 

00) = the  spectral  power  density of the  meaningful  input  signal. 

FlGURE 4. 14. Circuit for determining  the error in transmission of 
meaningful  signal. 

The  total  error  measured  at  the  output is made up of noise e r r o r  plus 
the  transmission  error of the  meaningful  signal: 

e2 = em2 + ena. 

Inserting  the  expression  for  these  errors  as  given by  equations  (4.45)and 
(4.47) we obtain 

I I 

FlGURE 4.15. Transmission of a signal through a con- 
ditional  system. 

E x a m  p 1 e . Find  the  mean  square  error  at   the output of the  circuit 
shown in Figure 4.16. The  input of the  system is white  noise  with  spectral 
density @mm(jo) -2.. The  circuit  parameters: R - W Q ,  c-0.01 F. 
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FIGURE 4.16. Schematic  diagram of a  system. 

We first determine  the  transfer  function of the  system.  Forthe  circuit  
in Figure 4.16 we may  write 

Solving  these  equations  simultaneously, we derive  the  transfer  function 

Inserting  the  circuit  parameters  into  this  equation, w e  obtain 

1 1  
G ( s )  = -.- 5 s+0.2 

o r  

The  mean  square  error  at   the output is according  to (4.45) equal  to 

00 

Inserting  the  parameters, we have 

1401 154 



Seeing (4 .43)  that 

IG(lo)P-G(jo)G(-jm), 

we find 

Integrating, .we obtain 

-OD 

Using  the  same  example, we shall now determine  the  spectral  density 

It  follows  from (4.43) that  the  spectral  density of the  output signal is 
of the  output  signal. 

equal  to 

Inserting  the  parameters, we obtain 

To optimize  an  automatic-control  system, it suffices  to  determine  the 
t ransfer  function of a  system whose  output  mean  square e r r o r  is minimum. 
Moreover,  the  constraints  imposed b y   t h e   c o n d i t i o n   o f   t h e  s y s  - 
t e r n   b e i n g   p h y s i c a l l y   s t a b l e  must  be  taken  into  consideration. 
This  condition  requries  that  the  system  remain  at  rest (output signal  be 
zero)  as long a s  no signal is fed  to  the  input.  Mathematically,  this  condition 
is written as 

g(t)  =O when t<O. 

Without  proof, we state  that  for  a  system  to  be  stable, its transfer  func- 
tion  must  be  analytical  in  the  right half of the  complex-frequency  plane. 

In this  case all the  p o 1 e s * of the  transfer  function  fall  in  the  left half - 
plane. 

Let  us first consider  howthe m e a n   s q u a r e   e r r o r  i s  m i n i  - 
m i z e d, without considering  the  constraints  imposed  by  the  condition of 
stability. 

A pole of a  function  is a point  at  which  the  function  assumes an infinite  value. For example,  the point 

SI -a is a pole  of  the function U(s)=- . 1 
r+a 
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Take  the  expression  for  the  phase-amplitude  response  in (4.11) 

where &(a) and u ~ ( o )  are  the  modulus  and  the  phase of the  given  phase- 
amplitude  response  (real  functions of frequency).  To  minimize  the  mean 
square  error   a t   the  output, we modify  the  phase-amplitude  response  and 
se t  it at 

where Aopt (0) and uopr (o) are  the  modulus  and  the  phase of the  optimum 
phase-amplitude  response.  The  mean  square  error  at  the  system  output is 
then,  according to (4.48),  equal  to 

m 

Inserting  the  phase-amplitude  responses  from  equations  (4.49) and (4.50) 
into  this  equation we obtain  (the  arguments o and jo have  been  omitted fo r  
brevity): 

f -  l / [ A p  2% opt eiuo~te-ho~t ~ ~ ~ + ~ ( A , C O S U ~ - A ~ ~ ~ C O S  u,,,) + 

Now, 

I(A,cos ud-Aopt cos u,,,) +j(Adsinu,"Aop,sin u,#= 
= [ ( A ~ o s u , , - A ~ ~ ~  cosuopJ +](Adsin ud"A,p[ sin uJ]x 
~ [ ( A ~ o s u , " A , ~ ,  cosuOp,)-j(Adsin uopt-Aopt sin u&= 
=(Ad cos Ud-&pr cos Uop[)2+(Ad sin  uopr-Ao~t sinu,,)*= 
=A; +A~pt-2A,p,Ad(cosudcos~opr+sinudsinu,,J= 
= Ai +Azpt- 2A,3,, Ad cos (Uopt-Ud). 

Therefore,  seeing  that f?oPte-hoPt = I ,  we rewrite (4. 52) in  the  form 
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Therefore,  to  minimize  the  mean  square  error we must  maximize  the  neg- 
a t ive  term 2Aopt A, cos (uopt- u,), i. e., make 

"*pt=u, 

Hence,  to  minimize  the  mean  square  error,  the  phase of the  phase-amp - 
litude  response  need not be  changed,  and  may  remain  equal  to  the  given 
phase ud. 

ceding  equation  in  the  following  form: 
Further,   since uopt=u, (4. 53), cos (u,opt- uJ =l,  we can rewrite the  pre-  

m 

o r  

m 

Since all the  terms in the  integral  are  positive,  the  minimum  mean  square 
e r r o r  is determined by the  function 

F(&p,) P$pt (0% +@& "opt Ad@% +Ai @%* 

The  parameter Aopr is thus  determined  from  the  equation 

Differentiating  F(Aopt)and  setting  the  derivative  equal  to  zero, we obtain 

(4.54) 

Choosing  the  parameters A,, and u , ~ ~ ~  from  equations (4.53) and (4.54) we 
thus  minimize  the  mean  square  error: 

(4.55) 
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Inserting uopt from  (4.53)  and Aopt from  (4.54)  gives 

If .s is substituted  for io, the  optimum  transfer  function is 

It  follows  from  equations  (4.56a)and  (4.56b)that  in  the  absence of input 
noise (Gnsm=O) the  optimum  transfer  function (and frequency  response) is 

, equal  to  the  given  function.  The  optimization,  thus  in  fact,  reduces  the ef- 
fect of noise on the  output  function of ‘the  system. If the  system is noiseless, 
there is no point  in  this  optimization. 

We may  thus  say  that (4. 56b)  determines  the  optimum  transfer  function 
Gopt (s), of a  system with  noise,  from  the  given  transfer  function Gd(s) ,  of 
the  noiseless  system. 

Consider  an  example  in  the  determination of an  optimum  transfer  func- 
t ion. 

Let  the  spectral  densities of the  meaningful  signal  and of noise  at  the 
input  be 

Moreover,  the  transfer  function of the  system is 

Substituting s for  io, we obtain  the  frequency  response of the  system: 

Inserting  these  data  in  (4.56a), we find  the  optimum  frequency  response 
of the  system: 

Substituting s for  io and  also s2 for  02, we obtain  the  optimum  transfer 
function of the  system: 

1 
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A t  its poles GOFf (s) assumes  infinite  values.  Since K # o  and 6 # 00, the 
poles of the  function  are  determined  from  the  equation 

The  function  thus  has  three  poles: 

s, = 0; s1= m. V ? T a F ,  b , s3=- b 

Since  one of these  poles (s2>0) falls  in  the  right  halfplane,  the  optimum 
transfer  function G,, ( 5 )  is physically  unrealizable,  as  the  system  will  be 
unstable. 

Observe  that  in  (4.56b)  the  term 

is always  a  function of d. The  optimum  transfer  function  therefore  always 
has  conjugate  poles  (such  as s2 and s3 in  the  preceding  example).  This  term 
will , therefore ,   a1  ways  render  Gopt(s) unstable. 

The  only  particular  case when the  optimum  function is stable is the  case 
of noiseless  input, when (4. 5 7 )  is equal  to 1. In this  case,  if G,(s) is stable,  
the  optimum  system is naturally  stable. 

which best  approximates  the  optimum  function.  There is no general  pro- 
cedure  for  approximating  the  optimum  transfer  function of a  system by  a 
stable  function. We shall  therefore  consider  the  solution of Bode  and 
Shannon for  the  following  example. 

It  is  required  to  design a stable  system  for e x t  r a p  o 1 a t  i o n of a  ran- 
dom  function which would ensure  minimum  mean  square  error,  Assume  the 
input to be  noiseless. 

In all other  cases,  we are  forced  to  choose  a  stable  transfer  function 

This  problem is mathematically  stated  as  follows: 

u 4 f )  = ul( t+a) ,  (4. 58) 

where 1 1 2 ( f ) =  the  output  signal; 
ul ( f )=  the  input  signal; 

a = the  lead  (extrapolation)  time of the output  signal. 
The  transfer function of the  system is obtained by the  Laplace  trans- 

formation of (4.48),  and is equal,  according  to  equations (4 .9 )  and  (4.7), to 

-OD 

We substitute ?-a for t in the  upper  integral  (thus dt-dr ). 
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The  transfer  function  then  has  the  following  form: 

W 

J ~ d s  
G (s) = -00 =e . sa 

4 J w -  
Since  by  assumption  the  input is noiseless, we have  from (4. 56b) 

Gopt (s) = G,, (s) =e'". (4.59) 

This  function  has  a  pole, SI--. Since  this  pole  falls in the  right  half- 
plane,  the  transfer  function of (4. 59) is unstable. We therefore  must  find 
a realizable  function G(s) which  would best  approximate  the  optimum  func- 
tion Go, (s). 

We solve  this  problem as follows. First, the  physical  system  whose 
transfer  function we want to  find i s  represented in two parts  (Figure 4. 17), 
GI@) and Ws). 

represented  as a sum of two  components: 
The  spectral  density of the  meaningful  signal  fed  into  the  sytem  can  be 

where @$ (s)= the  complex  component of the  spectral  density  whose  poles 
are all in  the left halfplane; 

halfplane. 
@: (s) = the  complex  component  whose  poles  are  all  in  the  right 

I 
r' """"""_ 1 

I 
I I 

i- 
I I 
L """"""" J 

FIGURE 4. 17.  Determination of an approximation for oopt (8). 

For example, i f  

or 
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we take 

It is easy  to see that  always  in  this  decomposition 

@ii (s) -@it (-4. (4.6 Oa) 

The  transfer  function of the first part  of the  system is taken  equal  to 

(4.61) 

Since  all  the  poles of @$(s) a r e  in the left halfplane, GI@) is a physically 

~f now the  transfer  function of the  second  part of the  system is taken 
stable  function. 

equal  to 

G; (s) = ah), (4.62a) 

the  transfer  function of the  entire  system  (see  equations  (4.6l)and  (4.6%)) 
is equal  to 1: 

G(s)  =Gl(s) G; (s) =1. 

In  this  case  the input  and  output signals  are  equal. 

uz(0 = a ( t ) .  

Our  object,  however, is to  obtain an output  signal  with a lead of a seconds. 
We shall  therefore  somewhat  modify  the  transfer  function of the  second  part 
of the  system,  setting it equal  not  to 

dz gz(t). (4.62b) 

where  gz(t) is the  impulse  transfer  function of >he  second  part of the  system 
defined as  the  inverse  Laplace  transform of G;(s), but rather  to 

where Gz(s) is the  Laplace  transform of gz(f+a). 
For  this  function  to  be  stable, we introduce  the  restraint 

gz(t+a) =Owhenf<O. 

Npte that in our  system  (Figure  4.17)  the  intermediate  signal is white 

Indeed,  the  spectral  power  density of the  intermediate  signal uinr(f) is 
noise. 

equal,  according  to (4.43), to  
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From  (4.61) 

so that 

and  from  (4.60a) 

On the  other  hand,  from  (4.60) 

@I1 0’0) =@it (io) *ii 0’0). 

whence 

@inr (io) = 1. 

By having  chosen  the  transfer  function of the first part  of the  system 
according  to  (4.61), we have  converted  the signal ul ( t )  into  white  noise 
uint (Q 

White  noise  can  be  considered, with some  approximation, as a sequence 
of narrow  random  impulses  coming at close  intervals.  Each of these  impulses 
produces  an  output  signal 

[uz(f)] from  one  impulse =g#). 

The  integration of these  white-noise  impulses  gives  the  signal us(f). 
The  mean  square  value of the  output  function is determined a s  

m 

(4.64) 

The  signal uz(f) should  lead uint(f)  by a seconds.  Hence,  at f -0,  the  input 
signal  fed  into  the  second  part of the  system is equal  to qnt (0), and  the  out - 
p’d signal of the  system  should be uZ(-a). However,  to  satisfy  the  condition 
of stability, no output  signal u2(f) should  be  produced  during  the  time  in- 
terval,  - a to 0. The  mean  square  error   a t   the  
amounts  to  neglecting  the  white  -noise  impulses 

system  output  therefore 
between 0 and a seconds: 

(4.65) 
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The  relative  mean  square  error at the output is therefore  equal  to 

8 

Let  us  consider  an  example of determination of the  transfer  function  for 

Consider  the  Laplace  transform of the  autocorrelation  function of an 
a stable  system. 

input  signal: 

Design a system with a lead of a seconds. 
The  problem is solved as follows. 
a) Following (4.  60), GI1(s) is divided  into two factors: 

b)  From  tables,  we determine  the  inverse  function whose Laplace  trans- 
form  (see  equations  (4.62a)and  (4.62b)) is &(s): 

ga (f) - x (e4--; ( b o ) .  a 
(4.67) 

c)  The transfer function of the first block of the  system is computed  from 
(4.  61). 

d )  We determine  from  (4.67)  the  impulse  transfer  function of the  second 
block of the  system without considering its stability: 

(4.69) 

e )  The  condition of stability  requires  that gaopt(f+a) -0  when t<O. There - 
fore,  allowingforthis  condition,  the  transfer  function  (4.69)is  represented as 

The  transfer  functions  derived  are shown in  Figure  4.18.  It  follows  from 
these  curves  that  the  function a ( t )  (top graph) is stable  (see  4.67).  However 
a shift of a (bottom left) renders  this  function  unstable  (see  4.69). If we now 
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"Cut Off" f rom gro (t+a)  the  part  which  protrudes  into  the  range 1<0 (bot- 
tom right), we obfain a stable  function (4. 70). 

f )  We now find from (4.63) the  transfer  function of the  second  block of 
the  system,  which is defined as the  Laplace  transform  ofgr(f+a). To ac- 
complish  this, (4.70) is rewritten in a slightly  different  form: 

Using Laplace-transform  tables, we obtain 

FIGURE 4. 18. Transfer functions of the  second block of the  system. 

g) We now determine  the  overall  transfer  function of the  system: 
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Inserting Gg(s) from (4.68) and Gs(s) from (4.71), we obtain 

- - e*(s+c)-e-b+b) 
C-6 

h) The  mean square error of the lead output signal is equal, according 
to equations (4.65) and (4.67).  to 

i )  The  mean square value of the output function is determined  from (4.64) 
Therefore, substituting 00 for a in  the preceding expression, we obtain 

m 

k) Finally, the relative  error  (4.66)  is equal to 

1 2 1  
B " C + 2 r  
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Chapter V 

PRINCIPLES OF T H E   T H E O R Y  O F  NONLINEAR 
AUTOMATIC - CONTROL  SYSTEMS 

In the  previous  chapters,  only  linear  automatic-control  systems  were 
considered.  Cybernetic  systems,  however,  are  nonlinear. 

The  nonlinearities  arising in a system  can  be divided  into two groups: 
nonlinearities  inherent  in  the  system  elements, and nonlinearities  intro- 
duced for  the  purpose of improving  the  system's  response.  In  the  first  group 
we have  saturation  (Figure 5 . 1 ) .  backlash,  temperature  dependence,  etc. 
In  the  second  group we have  nonlinear  elements and nonlinear  feedback. 

B 

FIGURE 5. 1 .  Hysteresis  curve of ferromagnrtic  elements 

For  example,  Figure 5 . 2  shows  the  characteristic  curve of  a system 
hunting  the  extremum (up,; Ul,,,). It  can  be  seen  from  this  characteristic 
that  nonlinear  elements  have  been  introduced  into  the  system  to  enable au- 
tomatic  control  near  these  points  (this  problem will  be discussed  in  more 
detail  in  the  next  chapter). 

principle of superposition  does  not  apply and the  signal  spectrum  at  the 
A non-linear  system is essentially  different  from a linear  system.  The 
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output of  a nonlinear  system is different  from  the  input  signal  spectrum. 
The  stability of a nonlinear  system is determined  not  only  by  the  input  sig- 
nal,  but  also  by  the  initial  conditions.  The  transfer  function of a nonlinear 
system  depends on the input signal.  It is therefore  very  difficult  to  calculate 
the  response of nonlinear  control  systems.  This  involves  the  solution of 
complicated  high-order,  nonlinear  differential  equations, and a general  ana- 
lytical  solution is possible  only i n  a  few particular  cases with a varying  de- 
gree of accuracy. At present  numerous  methods  are  available  for  the  ana- 
lysis  of nonlinear  systems. In  what follows we shall  dwell  on  those which 
a r e  of fundamental  interest. 

1 .  METHOD O F  PIECEWISE LINEAR APPROXIMATION 

This  widespread  method  substitutes  several  straight  segments  (three in 
Figure 5.3) for  the  characteristic  curve of a nonlinear  element  (the  dashed 
curve  in  Figure 5.3).  This  method is highly  convenient  since  it  reduces  the 
solution of  a nonlinear  problem  to  an  approximate  linear  problem, and en- 
ables u s  to apply  the  techniques  developed  for  linear  systems. In some 
cases,  however,  the  piecewise  linear  approximation  method  gives rise to 
very  cumbersome  mathematical  expressions.  Particularly  complicated is 
the  introduction of boundary  conditions  specifying  the  transition  from  one 
segment  to  another.  This is the  main  factor  limiting  the  applicability of the 
piecewise  linear  approximation. 
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FIGURE 5. 3. Plecewise h e a r  approximation of 
the  characteristic  curve of a  nonllnear  element. 

2 .  DESCRIBING-FUNCTION METHOD 

The d  e s c r i  b i n g - f u n  c t i o n method  replaces  the  nonlinear  element 
of an  automatic-control  system by a linear  unit  which  approximately  de- 
scr ibes  its response. 

This  method makes the  following  assumptions. 
1 .  There  is a single  nonlinear  element in the  system (if several  nonlinear 

elements are introduced,  they  should  be  combined  and  considered as a 
single  element). 

2 .  The  response of the  nonlinear  element is time-independent.  This 
method  therefore  does  not  apply  to  nonlinearities  introduced  by  heating  of 
elements,  drift of parameters ,   e tc .  

3 .  If a sinusoidal  signal  is  applied  to  the  input of the nonlinear  element, 
i t s  output i s   a l so  a sinusoidal  signal, In other  words,  only  the  fundamental 
component of the  output  signal  is  considered.  This  assumption is generally 
valid,  because  in  most  cases  the  higher  harmonics of the  signal  have  small 
(relative  to  the  fundamental  component)  amplitudes  and are  thus  negligible. 
The  describing  function  approximating  the  response of  a nonlinear  element 
(Figure 5 .4)  can  thus  be  represented  in  the  form 

where N = the  describing  function; 
C = the  signal  amplitude  at  the  input of the  nonlinear  element; 
Dl = the  amplitude of the  fundamental  component of the  output  signal, 

depends on  the  input-signal  amplitude  fed  into  the  nonlinear  element. If, in 
addition,  the  nonlinear  element  contains  an  emf  source,  the  describing 

It  follows  from  this  equation  that  the  magnitude of the  describing  function 
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function  depends  on  the  frequency o. 
The  introduction of  a describing  function  thus  makes  possible  the  re- 

placement of the  nonlinear  element  by a linear  unit with a definite  gain  and 
phase  shift. 

ff,, .D,sinwt 
c L Nonlinear  element 

FIGURE 5 . 4 .  Nonlinear-element  substitution  diagram. 

Let us  consider an example of  how  a describing function is determined. 
Take a closed-loop  automatic-control  system  (Figure 5.  5) consisting of 

three  linear  elements  whose  transfer  functions  are GI (s), Gz(s), and Gf (s), 
and a nonlinear  element  with no emf  sources. A sinusoidal  signal &(f) of 
frequency o is applied to the  input. 

We moreover  assume  that  the  nonlinear  element  has a s a t  u r a t  i o n 
c h a r a c t e r  i s t i  c (Figure 5 . 6 ) .  The  nonlinear  element will therefore 
operate in  two different  ranges,  depending on the  amplitude  of  the  input 
signal u,,, ( t ) .  

Ef is1 
9f fir 

FIGURE 5. 5. Clrcult of a system with a  nonlinear  clement. 

If the  signal  amplitude u,,, ( t )  is not greater than u., the  nonlinear  element 
operates   as  a linear  amplifier with a gain 

R,-tga, 

where a is the  angle of slope of the  linear  portion of the  characteristic. 
If during  part of the  period u,,, ( t ) is   greater  than u,,, the  nonlinear  ele - 

ment  operates  as  follows.  During  the  first  part of the  period ( P > d  >, 0 (Fig-  
u r e  5. 71, when un, ( f )  is smaller  than u., the  characteristic is linear.  For  this 
par t  of the  period we may  write 

u,(S)=k,C sin S;@>S>O), (5 .2 )  

where kn=tga = the  gain of the  linear  portion; 
c = the  amplitude of input signal fed  into  the  nonlinear  element; 
8 =  of. 
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FIGURE 5. 6. Characteristic  curve of the  nonlinear  element. 

When the  signal u , , ( f )  exceeds u0, the  operating point of the  nonlinear 
element  shifts  into  the  nonlinear  saturation  region  (see  Figure  5. 6 ) .  In 
this  case  the  output  signal of the  nonlinear  element  remains  constant: 

una (6) =k,C sin p; (x -$>  6 > p). (5.3) 

W e  thus  see from  equations  (5. 2) and(5. 3 )  that  for  the  first  quarter  period 
we may  write 

FIGURE 5. I. The  operation of a  nonlinear  element. 

170 



This  signal is nonsinusoidal.  To  determine  the  describing  function of 
the  nonlinear  element we must find the  amplitude of the  fundamental  com- 
ponent of the  output  signal.  It  follows  from (4. 3 3 )  that  this  amplitude (T=2n) 
is 

m 

Changing  the  limits of integration  (to  integrate  from 0 to T/4) ,  we obtain 

t - 

Y 

Inserting una (6) from (5. 4 )  we find 

Since 

we have 

The  amplitude of the  fundamental  component  ai  the  output of the  nonlinear 
element  thus  depends on the  input  amplitude of the  signal (c) and the  satura - 
tion  voltage u.. 

Having  determined  the  amplitude of the  fundamental  component (01) of 
the  nonlinear  element, we use (5. 1) to  construct  the  describing  function: 

This  function  for k,=l  is shown  in  Figure 5. 8.  

5. 7 )  when u,,=Csin 6 equals u.. This  parameter is computed  from  the  con- 
dition 

The  parameter B determines,  for  a  given  frequency a, the  time  (Figure 

C sin 
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whence 

Let  us now evaluate  the  error  introduced by neglecting  the  higher  har- 
monics of the  output-signal  spectrum. 

Since u,,, (e) in (5 .4 )  is a curve  symmetrical  about  the  horizontal  axis, 
it has no zero  order   d-c  component  and no even  harmonics.  Moreover,  since 

this  curve is symmetrical  about  the  vertical  axis  passing  through  the  point - 2 
it is free  from  cosine  functions.  Therefore  from (4 .33 )  we have 

Y t  

un2 ( t )  =Dl  sin of + DS sin 3ot+ DS sin 5ot +... 
and since of=6, we obtain 

u,(t) =Dl  sin %+ 0, sin 36+ DS sin 56+ ... 

FIGURE 5. 8. Describing function. 

In order  to  estimate  the  error  introduced when the  third,  fifth,  etc. 
harmonics  are  dropped, we shall  determine  the  amplitude of the  third  (the 
highest  after  the  fundamental)  harmonic. We have  from (4. 33)  (integrating 
over a quarter  period): 

L 
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Inserting u, ,~ (9) from (5 .4)  and  integrating we obtain 

or  after  simple  manipulations 

Taking  the  ratio of the  amplitudes of the  third and  fundamental  harmonics 

This  ratio  indirectly  characterizes  the  accuracy of the  analysis  based  on 
the  describing  function. If j3 is inserted  from (5. 7), w e  obtain  the  plot  shown 
in Figure 5. 9. 

Let  us now consider how the  describing  function  can  be  used  to  analyze 
the  stability of a  nonlinear  automatic-control  system.  The  analysis wil l  be 
carr ied out for  the  particular  system shown  in Figure 5. 5. 

This  system  is  broken  at point a,  giving  an  open-loop  system with the 
transfer  function 

FIGURE 5. 9. Amplitude  ratio of the  third  and  fundamental 
harmonics. 

The  stability is analyzed  from  the  phase-amplitude  response of the  open- 
loop  system  using  the  Nyquist  criterion.  According  to  this  criterion,  a 
closed-loop  automatic-control  system is stable when the  phase-amplitude 
response of the  open-loop  system G,(jo) does not  contain  the  point (- 1; +io). 
Since  the  introduction of the  describing  function N is equivalent  to  the  sub- 
stitution of a  linear  for  a  nonlinear  element,  the  Nyquist  criterion  applies 
to  the  system  (Figure 5. 5) with  the  nonlinear  element  (Figure 5.6). 
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The  limits of stability  are  determined by the  equation (the phase- 
amplitude  response  passes  through  the  point (-1; +io)) 

G,(jO) 3- 1. (5.9) 

According  to (5. B ) ,  condition (5. 9 )  can  be  written as 

(5.10) 

We further  plot in the  complex  plane ( + ; + j )  (Figure 5. 10) the two functions 
described by  equations (5 .6)  and (5. 10): 

The  real  part of the  function ~ ( o ) ,  and f(p)are  laid off on the  abscissa of the 
complex  plane, and the  imaginary  part of q(o) i s  plotted  along  the  ordinate. 

It  follows  from (5. 10)  that  the  limits of stability  are  determined by the 
intersection  points of the two curves.   Three  cases  are  possible.  

F i r s tcase(Figure  5.  10,a): f ( p )  and q(o)do not intersect.  The  system is 
therefore  stable for any B, and thus  for  any input signal un, ( t )  fed  into  the 
nonlinear  element. 

Second case  (Figure 5. 10,b):  the  system  reaches  the  limit of i ts   s ta-  
bility when p attains its maximum. 

Third case (Figure 5. 10,~): the  system is stable when 

and unstable when 

pb> B> Pa.  

T h e  limiting  values $a and &, are determined by the  intersection  points of 
the  curves f ( p )  and ~ ( 0 ) .  

function of an  open-loop  system. We shall now consider  the  determination of 
the  describing  function  for a closed-loop  system. 

The  difficulty in analyzing a closed- loop automatic-control  system  (Fig- 
ure  5. 5 )  is due to  the  fact  that  its  describing  function N depends,  according 
to  equations (5. 6 )  and (5. 7), on the  amplitude Cof the signal u,, ( t )  fed  into 
the  nonlinear  element.  However,  because of feedback,  this  amplitude  de- 
pends, in  its  turn, on the  transfer  functions of the  system  elements and in 
particular on N. Moreover,  in  s3me  cases,  the  nonlinearity of one of the 
elements  may  render  the  transfer  function  many-valued  at  some  frequency 
( 0 )  of the input  signal. 

A t  present  the method for  determining  the  describing  function of a non- 
linear  element  operating  in a closed-loop  system  has  been  developed  only 

We have  previously  considered a procedure  for  computing  the  describing 
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FIGURE 5. IO. Determination of system  stability. 

Let  us now consider how the  describing  function  can  be  determined  for 
the  closed-loop  system  (Figure 5. 5 )  containing a nonlinear  element with a 
saturation  characteristic  (Figure 5. 6) .  

The  transfer  functions of the l i  near  elements  are 

It  follows  from  Figure 5. 5 that  the  ratio  between  the  Laplace  transforms 
of the  signals  at  the output of the  system and the input of the  elements GI@) 
is equal  to 

= N G l ( s ) G z ( s ) .  (5.11) 
U A S )  

Moreover, 

(5.12) 

The  ratio  between  the  Laplace  transforms of the input  and  output signals 
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of the  closed  system is determined  from (4.14) a s  

where G ( s )   = N G l ( s ) G z ( s ) i s  the  transfer  function of the  open-loop  system 
(no  feedback). 

Inserting G(s) into  this  expression, we obtain 

(5.13) 

Solving  equations (5. 1 l), (5. 12) and (5. 13)  simultaneously, we find  the  ratio 
required  in  further  computations: 

Inserting GI (s), Gz(s),  and G f  ( s )  into  this  equation, we obtain 

where k=RIk&f. 
Substituting jo for  S ,  we have 

U (io) k l j o ( j o + 2 )  "'= 
~1 (io) k ~ + j o ( j 0 + 2 )  - 

We rewrite  this  equation in a  somewhat  different  form: 

V,(jo) - R1 (-a2+ j 20 )  ~ ~ ( 4 + d - k N )  +j20&N 
U1 (io) kN"02+ j 20  

- =4 " 

(kN-u2)2+4d 

Applying (4.  ll), we again  rewrite  this  equation as 

where 

In this  case,  the real component is 

(5. 14)  
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and  the  imaginary  component is 

The  amplitude  ratio of the  signals G, ( I )  and q ( t )  is therefore 

C A ( o )  = E " R I  

After  further  manipulation 

(5.15) 

Here k, kl, E ,  and o a r e  known, and C and N a r e  unknown. 
On  the  other  hand,  the  describing  function N is related by equations 

(5.6)and(5. 7) with theamplitude C of the  input  signal  fed  into  the  nonlinear 
element; we have 

(5. 1 6 )  

where R,=tga and u.,, a r e  known parameters of the  nonlinear  element  (Fig- 
ure  5.6). 

If equations  (5.  15)  and(5.  16)  are now solved  simultaneously, we obtain 
the  describing  function N. 

3.  PHASE-PLANE  METHOD 

Analysis of automatic  -control  systems  by  the  describing-function  method 
essentially  reduces  the  problem  to  the  substitution of the  given  nonlinear 
system by an equivalent  linear  system. In distinction  from  this  method,  the 
phase-plane  method  provides a technique for the  direct  analysis of nonlinear 
systems. 

The  phase-plane  method  amounts  to  the  following.  Take  an  autornatic- 
control  system  described by  a second-order  nonlinear  differential  equation. 
I ts   state  can be  specified  by  two  parameters  in a two-dimensional  plane, 
i. e., on the  so-called p  h  a s e p 1 a n   e .  An analysis of the  phenomena 
occurring on the  phase  plane  yields  the  essential  parameters of the  system 
Therefore,  the  phase-plane  method  can  be  applied  only  to  systems  de- 
scribed by differential  equations of o rde r  no higher  than 2. Moreover,  the 
initial  values of the  parameters  represented on this  plane  must  be  given. 

Before  proceeding  with  the  analysis of nonlinear  systems,  consider a 
linear  system  described  by a second-order  differential  equation 

(5.17) 
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The  initial  conditions of the  system  at   zero  t ime are 

First, let us  consider  a  particular  case of (5. 17) when a,  =O. Passing 
from  the  variable f to  the  complex-frequency  domain (s), we write 

S 2 U ( S )  +uoU(s) =suo+$, 

whence we obtain  the  Laplace  transform of the  signal 

From  Laplace  transform  tables we obtain  the  inverse  function 

Set 

Csincp=uo; CCOSQ--- 4 
VGJ 

Then 

where  from  (5.18) 

It  follows  from (5. 19) that 

(;IZ+ (-.+1. 1 
VZ 

(5. 18)  

(5.19) 

(5.21) 



If now the  variable u is plotted  along  the  horizontal  axis  (Figure 5. 111, 
and du along  the  vertical  axis,  (5.21) is represented by an  ellipse  with  the 

dt 
semi-axes 

The  coefficient  Cdefined  in (5. 19a)  changes  in  accordance with the  initial 
conditions (u, and g), tracing  a  family of ellipses on  the  plane  in  Figure 
5. 11. This  family is called  the  p  h a s  e p o r t r a i t of the  automatic  -con- 
trol  system,  defined by (5. 1 7 )  with 01=0. 

of the  signal on the  amplitude of this  signal. We see  in  Figure 5.11 that 
t ime is not  explicit  in  the  phase  portrait.  The  arrows  therefore  indicate 
the  direction of displacement of the  operating  point of the  system  in  time 
(the direction of the  phase  trajectory). 

The  phase  portrait  thus  specifies  the  dependence of the first derivative 

FIGURE 5.11. Phase portrait of a  system with  stable  oscillations. 

The  points of the  phase  plane  where 

(5.22)  

are  called s i n   g u l  a r . Since  the  derivatives of u and - vanish at these 

points,  the  singular  points  correspond  to  a  state of res t  of the  system. If a 
system is stable, its phase  trajectory  approaches a singular  point. 

For the  case  represented by (5.19), the singular point is determined  as 

du 
dt 
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follows. First, from (5.22) it follows  that 

" 
da 
& -0. 

The  sinpular  point  thus  falls  on  the  horizontal axis. 

a 

U 

b 

FIGURE 5. 12. Phase trajectories of a s.able (a) and an  unstable (b)  system. 

The  second  derivative of the  signal is equal  from (5.19) to 

Therefore,  since a,#O, the  second  coordinate of the  singular  point on 
the  phase  plane is equal  to 

u-0. 

In this  case  the  singular  point is the  origin.  In  our  example  (Figure 
5. 11) the  working  point  moving  along  the  phase  trajectory  oscillates 
about  the  origin.  The  ellipse  therefore  represents  stable  oscillations of 
the  system.  The  amplitude of these  oscillations is determined by the  ini- 
tial  conditions u, and ui. 

a  spiral. If the  system is stable, its operating  point  (Figure 5. 12.a)  moves 
along  the  spiral  to a singular  point  (here,  the  origin). If, however,  the 
system is unstable,  the  operating point (Figure 5. 12,b) moves  away  from 
the  singular  point  tracing  an unwinding spiral.  Plotting  the  spirals  for 
various  initial  conditions, we obtain  the  phase  portrait of the  system.  The 
phase  portrait of a  stable  system  having  the  origin  as its singular  point is 
shown  in  Figure 5. 13. 

portrait.  It is nevertheless  possible  to  determine  from  the  phase  portrait 

When the  coefficient a1 in (5. 17) is not zero,  the  ellipse  degenerates  into 

We have  previously  observed  that  time is not  explicit  in  the  phase 

180 



the  time of motion of the  operating  -point  from  one  position on the  phase 
trajectory  to  another.  The  time of motion of the  operating unit from  one 
position  (A)to  another (k?)is determined  as  follows: 

dt- "d~. 1 
du 
dt 
- 

Integrating  this  equation, we obtain 

Hence,  plotting  the  curve - - f (u ) ,  we obtain  the  time  from  the  area 1 
ckr 
dt 
- 

between  this  curve and  the  horizontal  axis. 

z du 

U 

FIGURE 5.13 .  Phase portrait of a  stable linear 
system. 

The  analysis of nonlinear  automatic-control  systems on the  phase  plane 
is carried out exactly  as  for  linear  systems. No general  analytical  solution 
of the  nonlinear  equations is attempted,  since  in  most  cases  this is simply 
imposssible. 

To obtain  the  phase  portrait of a  nonlinear  system, we can  use  the  cir-  
cuit  shown  in  Figure 5. 15. In this  circuit  the  signal (#)of the  system  to  be 
analyzed is fed  to  the  horizontal  -sweep of an  oscilloscope.  Simultaneously, 

a  differential unit feeds  the  rate of change of this  signal - to  the  vertical 

sweep.  The  oscilloscope  therefore  traces  the  phase  trajectory of the  system. 
Varying  the  initial  conditions, we may  reproduce  the  phase  portrait of the 
system. 

du 
df 
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FIGURE 5.14 .  Determination of time of morion of an operating  point. 

U 

FIGUKE 5.15. Circuit for producing  the phase portrait of a 
nonlinear  system. 

Stable 

Unstable 

FIGURE 5.16 .  Phase trajectories of a  nonlinear  system. 
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A certain  important  feature of phase  portraits  of nonlinear  systems  must 
be  kept  in  mind.  The  phase  trajectories of linear  systems  were  either 
stable or unstable,  whereas  in  the  case of nonlinear  systems we may ob- 
tain  trajectories  some of which are  stable  and  others are unstable. 

A s  an  example,  Figure 5.16 shows phase  trajectories of a  nonlinear 
system. We see from  this  figure  that  one  trajectory is stable and  the  other 
is unstable.  Between  these two we have  a  trajectory  corresponding  to  a 
mode of stable  oscillations.  This  trajectory is called  the 1 i m i t  c y  c 1 e . 
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Chapter VI 

ADAPTIVE  CONTROL  SYSTEMS 

1. GENERAL  CONCEPTS 

Until  recently  only o r d i n  a r y  automatic-control  systems  were  used 
in  the  national  economy.  These  systems  controlled  some  specified  para- 
meter  of the  controlled  object, by measuring its deviation  from  a  nominal 
reference  value and taking  appropriate  action  to  eliminate  the  arising  error. 

One of the  simplest  ordinary  systems is shown in  Figure 6. 1. This 
system  comprises  a  measuring  device (a nonlinear  bridge) and a  magnetic 
amplifier (Mu). The  controlled  object is a  synchronous  generator whose 
voltage (a) must be maintained  constant. 

FIGURE 6 . 1 .  Synchronous  generator voltage  regulation. 

The  measuring  bridge  consists of two linear  resistors (R)  and two  non- 
linear  elements  (zener  diodes,  thermistor, etc. ) whose resistances  vary 
with current.  The  characteristic of the  measuring  device is represented 
by the  curve  in  Figure 6 .2 .  The  operating  portion  (solid  line) is described 
by  the  equation 
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where k = t g a =  the gain; 
%= the  nominal  generator  voltage. 

The  system  functions  as follows.  When the  generated  voltage is a t  its 
nominal  value,  the  excitation  current is produced by field winding ( I )  which 
is supplied  from a d-c  voltage  source uCond. According  to (6 .  l), when the 
nominal  voltage is generated,  the output  voltage  signal  from  the  bridge is 
zero.  The  magnetic  amplifier is therefore  cut off and  no current  flows 
through  field  winding (2) of the  generator  (idling  current is neglected). 

FIGURE 6.2. Characteristic  curve of the  measuring 
device. 

If now for  some  reason (e. g.,  a  load is connected  to  the  circuit)  the 
generator  voltage  drops,  a  negative  voltage  signal is produced at the  output 
of the  bridge  (see  equation ( 6 .  1)). This  signal is proportional  to  the  deviation 
of the  generated  voltage  from its nominal  value.  The  impedance of the  mag- 
netic  amplifier  therefore  decreases  and  current  flows  through winding (2). 
This  current  reduces  the  deviation of the  generated  voltage  from its nominal 
value  to a permissible  value. 

The  development of engineering  cybernetics  has  contributed  to  the  rapid 
advent of a new type of automatic-control  systems,  the so - called a d  - 
a p t i v e   ( o r   s e l f   - a d j u s t i n g )   c o n t r o l   s y s t e m s .   O r d i n a r y  con- 
trol  systems  have a rigidly  defined  regulation  specification (e. g., (6. 1))  to 
ensure  the constancy-of a  certain  parameter,  whereas  adaptive  systems 
a r e  intended  for  solving  much  more  complicated  problems which require 
adaptation  (or  adjustment) of the  regulation  specification. In most  cases,  
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adaptive  systems  are  used  to  ensure e x t  r e  m u m  (maximum or minimum ) 
values of various  parameters of the  controlled  object. 

F o r  example,  an  automatic-control  system  used  in  chemical  industries 
can  be  designed  to regulate a  particular  process s o  that  maximum  output 
(of given  product  quality) is ensured with minimum  consumption of raw 
material .   These  systems  are known a s   o p t  i m  u  m s y s t e m s . The  pa- 
rameters  which are  optimized in automatic  control  are  called e x t  r e  m a 1  . 

Optimum  adaptive  systems  can  be of two  kinds:  variable-structure sys- 
tems and  constant-structure  systems.  Since  variable  -structure  systems 
have  not  been  very  much  studied, we shall  consider  in what  follows  only 
constant-structure  systems.  The  discussion  will  be  limited  to  cases  where 
the  controlled  parameter  has  a  single  extremum which  depends on a  single 
independent  variable. 

The  simplest  adaptive  system  can  be  designed by introducing an addi- 
tional  element  into  the  ordinary  automatic-control  systems.  This  element 
(i()can  be  coupled  either  in  the  forward loop of the  controlled  member 
(Figure 6.3) or in  the  feedback  loop.  The  element K is so designed  that its 
parameters  adapt  themselves  in  accordance  to  the  control  signal  emitted 
by the  logical  computing  circuit.  The  computing  circuit,  in  turn,  measures 
the  input  and  output parameter of the  system,  processes  the  information re- 
ceived,  and  controls  the  element i( so that,  regardless of any  change i n  the 
object or in external  conditions,  the  controlled  parameter is extremized. 

1401 

Input - 

Input 

Controlled 
system 

Feedback 

system 
1 Output 
-c 

Controlled  Output - D 

I I system 

Feedback 
system 

I . . Computet 

FIGURE 6.3. Simple  circuits for adaptive  control  systems. 
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Adaptive systems  are  always  very  complicated  logically and are   in-  
variably  nonlinear.  Their  analysis  and  design is therefore  .a  formidable 
problem. 

Before  proceeding with a discussion of adaptive  control  systems, we 
shall  consider  a  system with a time-fixed  extremum and  a  programmed 
control  system.  These  systems  are  much  simpler  than  adaptive  control 
systems. W e  should  therefore  be  well  aware of the  range of their  applica- 
tion, so  a s   t o  restrict the  use of complex  adaptive  control  systems  to  cases 
where  the  problem  cannot be solved by these two simpler  systems.  More- 
over,  the  analysis of cybernetic  extremum  systems will help  in  understand- 
ing  the  design  and  the  operation of adaptive  control  systems. 

2 .  FIXED-  EXTREMUM SYSTEMS 

We shall  consider  this  type of automatic-control  systems by the follow-: 

Consider a heavy-duty  semiconductor  rectifier, whose characteristic is 
ing  example. 

shown  in  Figure 6 .4 .  The  current (i) through  the  rectifier  is  to be controlled 
for  maximum  efficiency (q-) of the  device. 

I, r I 

I’ I 
I I j 

i 
I j 

i 
(opt 

FIGURE 6 . 4 .  Characteristic  curve of a semiconductor 
rectifier. 

When the  maximum  efficiency is constant  in  time (being  independent of 
heating  and  aging of the  rectifier), we say  that  the  controlled  object  has 
a  time-fixed  (or  simply  fixed)  extremum.  From  Figure 6 . 4  it is easy  to 
see  that,  to  maintain  maximum  efficiency,  the  control  system  must  be  de- 
signed  in  accordance with the  following  regulation  specification: 

I opt= const. 

Hence, if an  ordinary  regulator  receives a signal  proportional  to  the 
rectifier  current,  this  regulator wil l  maintain  constant  optimum  current; 
thus  maximizing  the  efficiency. 
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A suitable  system is shown  in  Figure 6 .  5. The rectifier bridge B and 
its load Z a r e  coupled  through a magnetic  amplifier M to   an  a-c   source (u,,). 
One  control winding of the  magnetic  amplifier  receives a constant  voltage 
uConlt =Ri,,, and the  other  control winding receives  a  voltage  proportional 
to  the rectifier current u=Ri. Since  the  fluxes  induced  by  these  currents 
in  the  magnetic  amplifier  are  in  opposite  directions,  this  circuit  ensures 
that  the  rectifier  operates  at iopt =consf. Indeed,  let  the  current I increase 
for  some  reason (e.  g.,  an  increase of input  voltage urn). The  voltage  ap- 
plied  to  the  second  control winding of the  amplifier  increases.  Consequently, 
the  amplifier  impedance  increases  and  the  current i drops  approximately 
to its previous  value. 

Since  the  current  at  the  amplifier  output is constantly  equal  to iopr, the 

FIGURE 6.5. Circuir of a control system  with  fixed  extremum. 

3 .  PROGRAMMED  SYSTEMS 

These  systems  are  used when we have  a  fairly  accurate  mathematical 
description of the  relationship  between  the  extrema1  parameter  and  the 
parameters  affecting its variation;  moreover,  this  relationship  should  not 
be  unduly  complicated. 

Consider  an  example of ,a programmed  control  system.  Our  problem  is 
to  design an automatic-control  system  ensuring  aircraft  will  cover  the 
maximum  possible  distance.  The  flight  range of aircraft  depends  on its fuel 
consumption, i. e , ,  on  the  efficiency of its engines.  Aircraft  engines  have 
a  specified  optimum  operating  condition  where  a  minimum  amount of fuel 

pe r  km is burned.  Consequently, an optimum  flight  velocity(Vl)exists 

(Figure 6 . 6 )  for  minimum  fuel  consumption. 
Thus,  except  for  one  essential  factor, we could consider  aircraft   as 

fixed-extremum  systems,  analogous  in  principle  to  the  previous  case of 
the  semiconductor  rectifier. A fixed  velocity  equal  to VI would have  then 
ensured  maximum  flight  range. 

(Q) 
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FIClJRE 6 . 6 .  Specific  fuel  consumption as a function of flight  velocicy. 

However, in long-distance  flights  the  weight of the  fuel  constitutes a 
considerable  portion of the  aircraft  weight.  Therefore,  as  fuel is burnt, 
the weight G of the  aircraft  decreases.  Since  the  optimum  velocity  changes 
a s  the  aircraft  becomes  lighter  (the  dashed  curve  in  Figure 6.6),  the  extremum 
system  is  disturbed.  Hence,  as  the weight of aircraft  decreases,  the  extrema1 
velocity  must  be  readjusted.  This  adjustment is determined  as  follows. 

The  extrema1  velocity of the  a i rcraf t   as  a function of its weight is 

The  variation of the  aircraft weight in flight is 

G=(p(L). 

These  two  functions  give  the  regulation  specification  for  the  flight  veloc- 
ity,  ensuring  the  maximum  range  for  the  aircraft: 

The  flight  velocity  can  thus  be  controlled in accordance with relationship 
( 6 . 2 )  by  a programed  control  system.  This  control  system  consists of a 
programed  device  (magnetic or perforated  tape)  storing  the  function  (6.2), 
and of a system  for  adjusting  the  aircraft  controls.  The  accuracyof  the  auto- 
matic  system of course  depends on how equation (6.2) describes  the  true  char- 
acterof  the  changes  in  the  flight  velocity. 

4. DERIVATIVE-SENSING  SYSTEMS 

In  the  preceding  cases  the  control  equations  were known. Let  us now 
consider  some  cases  where  these  equations  are  unavailable. 
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A diesel  generator  operating in parallel with a  power  system,  must  be 
so controlled  that  the  overall  efficiency is maximum at all t imes.  

FIGURE 6. I .  Efficiency versus fuel-consumption  characterisrics 
of a diesel  generator. 

The  previous  examples of extremum  control  systems do not  apply  here. 
First, the  equations  describing  the  operating  conditions of the  diesel  gen- 
e ra to r   a r e  unavailable  and,  second,  changes in diesel  temperature  and  in 
grid  parameters  preclude  the  choice of operating  conditions  which would r e -  
main  optimum  during  the  entire  relevant  time.  The  relationship  between  the 
efficiency of the  diesel  generator and the  fuel ( 9 )  required  is  shown  by  the 
solid  curve  in  Figure 6 .  7. No mathematical  description  for  this  curve is 
available.  Moreover,  this  curve  becomes  distorted, and drifts  in a  rather 
arbi t rary way during  the  time t (the  dashed  curves). 

However,  regardless of the  actual  function q=f (q) ,  the  extremum  ef- 
ficiency of the  diesel  generator is determined by the  relationship 

To  ensure  extremum  control of the  diesel  generator we therefore  com- 
pute its efficiency,  differentiate  it with respect  to  the  quantity of fuel,  and 
maintain  the  derivative  at  zero  value  at all t imes.  

A circuit of the  system  providing  this  control is shown  in  Figure 6. 8. 
The input of the  systems  consists of the  output parameters  of the  generator 
(current,  voltage,  and cos cp), and t h e  input of the  diesel  (fuel).  Multiplying 
the  three  generator  parameters,  we obtain  the  output  power (Wout)  of the 
diesel  generator.  Since  the  amount of fuel  fed  into  the  diesel (9) is propor- 
tional  to  the  generated  output  power,  the  quotient WOut/9 gives  the  efficiency. 

The  rates of change of the  efficiency , and of the  fuel  consumption 
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a r e  computed.  The  ratio of these  two  parameters  gives  the  derivative - drl 

The  signal u= - is compared with zero by an  ordinary  automatic  regu- 

lator. 

dll dq- 
d!l 

FIGURE 6 . 8 .  Circuit  differentiating  the  efficiency  with  respect to the  quantity 
of fuel. 

It  can  be  seen  from  Figure 6 . 8  that a derivative  sensing  system  requires 
at  least  three  units: two  differentiations  and  one  divider. 

The  derivative-sensing  extremum  system is fairly  simple.  However, 
differentiators, as we have  observed  in  section 2 - 9 , d ,  amplify  high-frequen- 
cy  errors.   This  l iabil i ty  sharply  l imits  the  application of systems of this 
kind. 

5. SIGN-SENSING SYSTEMS 

In order  to  eliminate  differentiation  and  their  associated  errors,  units 
have  been  developed  to  react  to  the  sign of the  derivative,  rather  than  to 
its magnitude. A system  using  these  units  for  maximizing  the  efficiency 
of a  diesel  generator will now be  considered. 

curve shown  in Figure 6. 9. This  curve  drifts  arbitrarily  in  time  as  a  result 
of changes  in  the  parameters of the  diesel  generator. We shall  assume, 
that  this  drift is much  slower  than  the  response  time of the  control  system. 
Moreover, we shall  tentatively  assume all the  system  components  to  be 
intertia-less.  Our  problem is then  reduced  to  the  design of a  control  system 
which  would adjust itself to  the  extremum of a s t  a t  i c (nondrifting)  curve 

The  efficiency q varies with the  quantity of fuel  input q according  to  the 

rl'f(4). 
First, the  derivative is replaced by a ratio of finite increments: 

An electric  motor  operates  the  fuel  feed  pump. If the  efficiency is increasing, 
the  diesel  generator is operating  in  the  left-hand  part of the  characterist ic 
(Figure 6 .9 )  :moving  toward the extremum  point. When q has  reached  the 
extremum  on its upward  path,  the  efficiency starts decreasing.  Therefore, 
if q increases, the  efficiency q changes its trend from upward  to  downward 
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and  the electric motor  must  be  reversed. When q is decreasing,  and  the 
efficiency  changes its trend  from  upward  to  downard,  the  motor  must  again 
be  reversed. 

FIGURE 6 . 9 .  The  characteristic cwve  of  the  con- 
trolled  parameter. 
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FIGURE 6.10 .  Sign-sensing  system. 

We thus  see  that  in an extremum-hunting  control  system,  the  fuel  sup- 
ply  must  be  reversed  whenever  the  increment Aq changes its sign.  This 
logical  proposition is the  basis on  which these  sign-sensing  systems  op- 
erate.  

6 .  10. In this  circuit  the  computor  receives  signals  from  the  input and the 
output of the  controlled  member  and  computes  the  efficiency q. 

A circuit of a  sign-sensing  adaptive  control  system is shown  in  Figure 
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FIGURE 6.11. Deterwination of the sign of the in-  
crement. 

Note that in  adaptive  control  systems  the  output of the  computing  unit 
which determines  the  extrema1  parameter (in our case,  q ) is  called  the 

. s y s t e m   o u t p u t  . The  computing  device is thus  an  inseparable  part of 
the  controlled  member.  The  term  ' 'system output"  will  be  used  in this 
special  sense  in what follows. 

The  system output (Figure 6 .  10)  is fed  into a sign  discriminator for. 
determining  the  sign of Aq. Whenver  the  sign  changes, t h e  motor. actuating 
the  fuel  feed  pump  is  reversed. 

A circuit   for  determining  the  sign of the  increment Aq is shown i n  Fig- 
ure  6 .  11. Since  in  this  circuit  thed-c  motor  has  constant (in direction and 
magnitude)  excitation  current, its speed is proportional  to  the  armature 
voltage.  Hence  with k lq>k2 ,  the  motor  speed is 

n=h(kIq--kl) 

where k3 is a coefficient of proportion. 
The  speed-voltage  characteristic is shown  in  Figure 6. 12. The  diode 

connected  in  the  circuit  (Figure 6. 11) clips  the  superfluous  negative por-  
tion of this  characterist ic (the  dashed  line). 

whenever  the  motor  changes  over  from  acceleration to deceleration.  The 
motor  decelerates when the  efficiency starts decreasing.  The  centrifugal 
switch  can  thus  be  used  to  provide  the  reversal  signal  for  the  fuel-feed 
motor, as shown  in  Figure 6. 13. In  this  circuit  the  coils (C, and C , )  of 
two selectors  reverse  the  polarity of the  excitation  winding  and  thus  the 
direction of the  fuel-feed  motor  whenever  the  contact of the  centrifugal 
switch ( S )  is made. 

Let us consider  the  operation of the  system  from  the  moment  the  fuel- 
feed  motor is started  and  the  supply of fuel ( q )  starts  increasing  (from  zero). 
The  efficiency q increases  simultaneously  (Figure 6 . 9  ). 

When the  extremum B is attained,  the  efficiency  starts  decreasing.  The 
switch S (Figure 6. 13) closes  and  the  selector is rotated  through  one  divi- 
sion,  reversing  the  polarity of the  current in the  windings of the  fuel-feed 
motor.  The  motor is reversed  and  the  fuel  supply (9 )  is gradually  reduced. 
The  efficiency  increases  again,  but  passing  the  extremum  it  starts  decreasing. 

A centrifugal  switch  on  the  rotor of this  auxiliary  motor  makes  contact 
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The  switch is again  actuated  and  the  fuel-feed motor is reversed.  The 
quantity of fuel  again  increases  producing a simultaneous  increase  in q. 
The  system  thus  continuously h u n t s   f o r  the  extremum.  This  oscillatory 
motion  about t h e  extremum is c a l l e d   h u n t   i n  g of the  control  system. 
During  hunting,  the  system a s  if follows  the  receding  motion of the  ex- 
tremum and takes  appropriate  logical  measures  for  catching up  with this 
point. 

n 

FIGURE 6.12. Speed-voltage characteristic. 

There is a serious  shortcoming  in  this  system. For  example,  assume q 
is increasing and the  system  reaches point  A(Figure 6.9) .  The  extremum 
specifications do not require  the  reversal of q at this  point,  since q is 
increasing.  Let now a transient  pulse  appear  at  the  system  output.  The 
decay of this  pulse  (decrease of voltage) is interpreted by the  circuit of 
Figure  6.10 as a decrease of q. Switch S thus  makes  contact and the  fuel 
feed is reversed.  Correspondingly, q will decrease and the  normal  opera- 
tion of the  system  will  be  disturbed. 

To  prevent  the  possibility of this  malfunctioning,  additional  control  de- 
vices  are  introduced  into  the  circuit. One of these  devices is shown  in 
Figure  6.14. A t ime  relay R is connected  in s e r i e s  with the  contacts of 
switch S in the  control  circuit of coils c, and C, of the  selectors  (Figure 
6.13).  This  relay  has a normally  closed  contact, which breaks r seconds 
after  switch S closes,  and  almost  instantaneously  makes when the  switch 
opens. 

energized  during  normal  operation  (hunting) of the  system. If, however, a 
malfunction  has  caused q to  follow  for  too  long a time a unidirectional  trend 
(increasing or decreasing),  the  relay is energized,  is  immediately  de-ener- 
gized,  and  then  once  again  energized.  The  selectors  consequently  step 

The  time  lag (7) of the  relay is so chosen  that  the  relay  is  too  slow  to  be 
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over  the  successive  contacts and q is reversed.  Normal  operation of the 
system is thus  restored. 

FIGURE 6.13. Circuit for reversal of fuel-feed motol. 

"ic2 S 

FIGURE 6.14. Self-control  circuit. 

6. EXTREMUM MEMORY SYSTEMS 

The  block  diagram of an extremum  memory  system is shown in Figure 
6.15,a.  This  system  consists of a  computing  unit,  for  computing  the  extre- 
mal  parameter (q), a comparator, a memory  unit,  and a control  element 
(the  analog of the  fuel-fed  motor in the  previous  example). 

The  basic  circuit of the  memory unit  used in this  system is shown in 
Figure 6.15.b. A signal u1 proportional  to  the  current  value of the  extrema1 
parameter  (q) is applied  to  the  input of this  unit.  The  output  from  this  unit 
(Figure 6.1 5,a)is coupled  to  one of the  inputs of the  comparator.  The  output 
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of the  comparator  (u5)is  applied  to  the  transistor  control  circuit. When 
the  value of the  extremal  parameter (q) increases,  the  voltage at the  output 
of the  memory  unit is proportional  to  this  parameter (ua=ul=&q), 

Computing unit 

a 

FIGURE 6.15.  Extremum memory  system. 

When u1 increases,  the  condenser C is charged.  Let  this  charging  be 
much  more  rapid  than  the  rate of change of ~ 1 .  Then, a s  ul attains its maxi- 
mum  (extremum)  value  and starts decreasing,  constant  voltage  equal  to 
is maintained at the  input of the  memory unit. The unit thus  stores  the 
extremum  (maximum)  value of the  efficiency (upeX=kqex). 

When a voltage u3 is applied  to  the  circuit,  the  condenser  discharges 
through  resistor R and  the  voltage  at  the  circuit  output is again  equal  to  the 
input  voltage (uz=ul-kq). 

The  extremum  memory  system  (Figure 6.15.a) functions as follows. 
During  the  increase of the  extremal  parameter,  the  output of the  memory 
unit is proportional  to  the  current of q. Both inputs of the  comparator  there- 
fore  receive  equal  voltage, both  proportional  to q, and  no  output  signal is 
produced by this unit. 

However, when the  extremum  is  attained,  the  current  value of t h e  ex- 
tremal  variable (?) starts  decreasing,  whereas  its  maximum  value of (ae,) 
is stored by the  memory  unit and is maintained  constant.  Therefore, when 
the  difference  between  these  values of the  extremal  variable  reaches a 
certain  limit 
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the  comparator  emits  a  signal which causes  the  correcting  element  to re- 
verse  the input  signal (4). 

On reversal ,  signal ut clears the  memory (which has  previously  stored 
the  maximum  value qaf, of the  extremal  variable)  and  the  output  voltage of 
the  storage is again  proportional  to  the  current  value q. The  process is 
resumed  until  the  parameter q reaches its maximum  value. A t  this  point 
the  memory  unit   stores  a new value r] and when the  difference 

-+I 

All = - rl 

is attained,  the  system is again  reversed.  The  system  thus  continually 
hunts  the  extremum. 

Sign-sensing  systems  and  extremum  memory  systems are relatively 
simple.  These  systems,  however, are too  sensitive  to  noise.  The  systems 
considered  in  the  next  section  are  free  from  this  disadvantage. 

7. STEP SYSTEMS 

In  these  systems,  the  extremal  variable 1s measured  at  definite  time 
intervals,  called s t  e p s . The  values  measured  at  the  beginning  and  end 
of each  interval  (step)  are  then  compared. If the  extremal  variable  has  de- 
creased  during  the  given  step,  the  input  parameter ( q )  is reversed.  Other- 
wise,  the  system  operates  as  normal. 

a step is assumed,  errors  may  creep in  due  to  the  drift of the  extremal 
variable. On the  other  hand, if the  step is too  small,  the  normal  function- 
ing of the  system  can  be  affected by  high-frequency  noise  generated  in  the 
system  or  received  from  outside. 

Let us consider  the  step  system  in  application  to  the  previous  example 
of a  diesel  generator,  where  the  extremal  variable is the  efficiency . A 
block  diagram of this  system is shown  in  Figure 6. 16. 

In  this  system  the  extremal  parameter q is determined,  as  before, by 
a computing  unit.  Since q continuously  varies  over  the  step,  an  integrator 
for  producing  the  average  value of the  step ( qav)  is coupled to  the  output 
of the  computor.  The  integrator,  the  memory  unit,  and  the  comparator, 
all receive  timing  signals  from a t imer   a t   in tervals  A t .  

is shown  in  Table 6 . 1  (the 1st time  signal is received At seconds after the 
diesel  generator is started).  In  the first step, qavl is compared  with  zero 
(since  the  system  has  just  started its operation). In subsequent  steps  the 
current  q is compared with the  previous  value qavf,, . If 

The width of the  step (At) is limited by the  consideration  that if too  large 

The  program  followed by these  devices when the  time  signal is received 

aVI 

the  system  operates  normally.  Otherwise,  the  controlling  element is actuated. 
From  Table 6. 1 it can  be  seen  that  the  memory unit consists of three 

stages  operating  in  sequence,  in  the  cyclic  order 1-2-3-1, etc. 
Let us now consider  some  characterist ics of the  step  system.  To  sim- 

plify  the  discussion, w e  shall   assume the rate of change of fuel  supply 
to  remain  constant  in  time. 
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FIGURE 6.16 .  Step  control  system. 

We should first note  the  following  circumstances  in  Figure 6. 17. The 
integrator  computes  the  average  value qavi during  the  i-th  step, but pro- 

duces  the  result only during  the  (t+l)-th  step.  The  comparator  therefore 
does  not  determine  the  current  variation of q, but ra ther  its variation 
during  the  preceding  step.  The  position of the  system  relative  to  the  ex- 
tremum is thus  established  with  a  delay of one-step.  The  integrator,  moreover, 
substitutes  a  discrete  dependence of q on 9 for the  continuous  curve q=f(q) .  

We plot  this  discrete  (step)  dependence  (Figure 6 . 1 8 )  adjoining  the  graph 
q-cp(t). We further  mark on  the  step  curve  the  dead  zone of the  comparator. 
This  zone  exists as there  is always  a  certain  finite  difference qav14 - qavi 
to which the  device  should  react. 

Let us  now follow  the  time  variation of the  quantity of fuel.  First  it in- 
creases  (we have  previously  assumed  the  rate of change of fuel  to  be  con- 
stant), but at  point A the  difference qavi- - qavi exceeds  the  dead  zone  limit 

of the  comparator,  the  controller is actuated*,  and  the  fuel  supply  decreas- 
es. At point B the  system is again  reversed,  and  the  fuel  supply  increases. 
We thus  see  that as the  system  hunts  near  the  extremum, the  quantity of fuel 
fluctuates  between qmo and 9* 

IC should be remembered that for the  sake of simplicity  here. as before, w e  neglect the time  lag introduced 
by the controlled  member. 
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TABLE 6.1 

Output of 
averaglng 

device 

1 
"I 

Storage device 

1st stage 1 2nd stage I 3rd stage 

clears 

rl 

Comparison device 
(compares) 

1 c a  ", 4 

Given the  functions g--cp(t) and q=f(g), w e  may plot the  curve of ef- 
ficiency  vs.  time.  This  curve is shown in  the  bottom  graph of Figure 6. 18. 
From  this  graph it can be seen  that  hunting  causes  the  efficiency  to  fluctuate 
between a maximum and  a  minimum  value.  The  narrower  the  dead  zone of 
the  comparator and  the  narrower  the  timing  signal,  the  smaller  the  fluc- 
tuations of q. 

FIGURE 6 . 1 7 .  Operation  characteristic of the  averaging 
devices. 
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The  step  control  system is highly  reliable  in  operation,  and  in  spite of 
its complexity, is very  widespread. 

4 Dead  zone 
A """"_ 

"""""_ "_"""" 
"""" "- 
""""" 

FIGURE 6 . 1 8 .  Characteristic  curves of the  step  controlsystem. 

In step  control  systems,  as  in  other  types of adaptive  control  systems, 
the  hunting of the  extremum is regulated by analyzing  the  effect of the b a s i c 
input  signal  (the  quantity of fuel) on the  result of operation of the  system. 

In addition,  the  position of the  system  relative  to  the  extremum  can  be 
determined by the  use of an a u x i  1  i  a r y h u n  t i n g  signal  superimposed on 
the  basic  signal  at  the  system  input. In this  case  the  hunting of the  ex- 
tremum is regulated  by  analyzing  the  auxiliary  signal  produced  at  the 
system  output  when  the  hunting  signal is fed  to its input. 

8. SYSTEMS WITH A N  AUXILIARY HUNTING SIGNAL 

A sinusoidal  signal 

ul =urn sin of 

is fed  into  the  system. 
It  can  be  seen  from  Figure 6.19 that, when  the  system  operates  in  the 

left  part of the  extrema1  characteristic  (say,  at  point 1). the  input (ut)  and 
the  output (a) signals   are  out of phase by 180" (the  positive  halfwave of ul 
corresponds  to  the  negative  halfwave of u2). If the  system  operates in the 
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h right  part of the  extremal  characteristic  (say, at point 3), uI and US are   in  
phase. 

whose  frequency is equal  to  that of the  input  signal (a). Therefore, if a f i l -  
ter passing  only  the  frequency of the input signal is provided  at  the  output, 
a  comparison of the  phase of the  transmitted  signal with  the  phase of the  in- 
put signal  can  be  used  to  establish  the  branch of the  extremal  characterist ic 
the  system is currently  operating,  and  in which direction  the  input  variable 
(here, q )  should  be  changed  to  attain  the  extremum. 

A t  the  extremum (point 2 )  the  output  signal  does  not  contain  the  harmonic 

FlGURE 6.19. Transmission of signal through extremum  system. 

A block  diagram of the  system with an auxiliary  continuous  hunting  sig- 
nal is shown  in  Figure 6. 20. The  controlled  system is, as previously,  a 
diesel  generator whose extremal  characterist ic is shown  in  Figure 6. 19. 

The  computor  in  this  system  computes  the  efficiency of the  diesel  gen- 
e ra to r  and  the fi l ter   passes only  the  sinusoidal  component of this  coeffi- 
cient  whose  frequency is equal  to  that of the  hunting  signal (a). 

A sine wave generator of frequency o is connected  to  the  input of the 
system. If the  system  is not tuned to the  extremum,,  the filter output wil l  
be  a  sinusoidal  voltage A q .  This  voltage,  together with the  voltage A u ~  pro-  
duced  by  the  generator, is applied  to  the  inputs of an AND gate. 

The  circuit of the AND gate is shown  in  Figure 6.21.  The  signals Aul and 
Aq a r e  applied  to .the inputs, so  that when the  system  operates  in  the  right 
part  of the  extremal  chnracteristic,  the  polarity of these  signals  (during  one 
half cycle) is a s  shown  in  the  figure.  The  output of the A N D  gate (Aut is 
much  greater  than bq) is  then a half  wave voltage uAND which can be used 
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as the  reversal  signal. When the  system  moves  to  the left par t  of the  ex- 
tremal  characterist ic  there is a  phase  shift of 180" in  voltage Aq, and  the 
output  voltage uAND drops  to  zero.  The  output of the AND gate uAND is 
delivered  to  the  changeover  switch  (Figure 6.22). 

FIGURE 6.20 .  Block diagram of a control system 
with an auxiliary  hunting  signal. 

Let u s  now consider  the  operation of the  system  in  Figure 6.20. We 
switch in the  diesel  generator.  The  system  operates  in  the left par t  of the 
extrema1  characteristic  (Figure 6 .  19). The  fuel-feed  motor  (controller) 
steps up the  fuel  supply (4) and the  system  moves  toward  the  extremum.  As 
soon  as  the  system  passes  through  this  point, Aq acquires  a  phase  shift of 
180" and  the AND gate  produces  a  reversal (uAND ~~ The  signal  operates  the 

switch  (Figure 6 . 2 2 )  and  the  polarity of the  current  in  the  excitation  wind- 
ing is reversed.  The  controller  therefore  reduces  the  quantity of fuel. When 
the  system  again  passes  through  the  extremum,  the  phase of Aq changes  and 
uAND drops  to  zero.  The  polarity of the  motor winding is again  reversed 

and  the  fuel  supply is stepped up. 
Until now, in our  discussion of the  method with a  continuous  hunting 

signal, we neglected  any  possible  time  lag  in  the  controlled  system which 
could shift the  phase of the  output  signal  relative  to  the  phase of the input 
signal. If there is time  lag,  the  control  system  must  contain  a  device 
compensating  for  phase  shift. In  the  diagram of Figure 6.20 this  device 
should  be  connected  between  the  filter  and  the AND gate, 

The  phase  shift  arising when the  signal is transmitted  through  the  con- 
trolled  system is variable  because of the  inconstancy of the  parameters of 
the  controlled  system.  Therefore,  this  compensation  involves  particular 
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difficulties,  and  consequently  limits  the  applicability of continuous  -hunting 
systems.  This  system is generally  employed when the  extremal  character- 
istic drifts  in  jumps,  as  jumps of the  extremal  variable (q) do  not  produce 
false  reversal  signals  (provided  the  system  remains in the  same  portion of 
the  extremal  characteristic). In step  systems,  on  the  other  hand,  a  dis- 
crete  increment of the  extremal  characteristic  (e.g. , a  small  jumplike 
shift)  can  result  in  malfunctioning of the  system. 

+I+ 
FIGURE 6 . 2 1 .  AND gate  circuit. 

Excitation 
coil 

FIGURE 6.22. Circuit for polarity  reversal of the 
control motor. 

9. PRINCIPAL  PARAMETERS  CHARACTERIZING 
EXTREMUM  CONTROL 

The  extremal  characteristic is translated so that  the  extremum  coincides 
with the  origin  (Figure 6.23). This  simplifies its mathematical  description. 
The  characteristic  shown  in  the  figure  has a mafimum. A l l  that  follows, 
however,  applies  equally  well  to  a  characteristic with  a  minimum. 

the  notation q for  the  extremal  variable, and q for  the input  variable  which 
determines  the  functional  variation of q. 

Although our  reasoning  applies  to  any  extremum  system, we shall  retain 
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FIGURE 6. 23. Extrema1 Characteristic 

W e  shall  assume,  as  before,  that  the  rate of change of the  input  variable 
9 is constant.  Moreover, we shall   assume  that   near  the  extremum  the  char- 
acter is t ic  is parabolic, and is described by the  equation 

q =  "RIP, (6.3) 

where R1 is a coefficient of proportion. 
The  control  process  starts  from  the  time when q is zero*.  First  

(Figure 6.24) A increases ,  but a t  point q the  system is reversed and 
9 starts  decreasing. At point B another  reversal  takes  place and q again 
increases.   The  parameter q thus  hunts  (oscillates  periodically)  about  the 
zero  value  (the  extremum  point). 

F rom (6.3), it can  be  seen  that  the  variable q also hunts,  but i ts   period 
is equal  to  one  half of the  period of q (Figure  6.24).  This  period  (T)is call- 
ed  the h u n t  i n g  p e r i o d  . The  maximum  deviation of q from  the  ex- 
tremum is called  the h u n t i n g  a m p  1 i t u  d e of the  output  and is denoted 
as A (Figure  6.24). 

In  Figure  6.24  it can be  seen  that  during  the  interval - T > t > O  the  input 1 
2 

variable q var ies   as  

9 4 t ;  (; T>f>O), (6.4) 

where k - t g a  is the  slope of the  characteristic q=Q(t) relative  to  the  hori- 
zontal  axis. 

Inserting this 4 into  (6.3), w e  obtain 
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The  rate of change of the  extremal  variable  in  the  interval 5 T>f> 0 
1 

is therefore  given  by 

!%"2k,Rlt. 
l# 

( 6 . 6 )  

FlGURE 6.24. Characteristics of extremum  control 

This  function  is shown in  the  bottom  graph of Figure 6 . 2 4 .  A t  t u  -T the 

system is reversed and the  derivative of the extremal  variable  changes its 
sign. Further  variation of the  derivative is evident  from  Figure 6 . 2 4 .  The 
maximum  value of this  derivative  where  the  system is reversed is called 
the c r i t i c a l   v a l u e .  

1 
2 
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The  average  value D of the  extremal  variable  over  one  hunting  period 
is called  the h u n t i n g  l o  s s and is defined a s  

where T i s  the  hunting  period. 
Inserting q from ( 6 .  5) and  changing  the l imits of integration, we obtain 

Cr 

It  should  be  observed  that  since  the  hunting  loss i s  an  integral  quantity, 
i t  is equal  to  the  d-c  component of the  extremal  variable (q), a s  the  average 
of all  the  harmonic  components  over  one  period  is  obviously  zero. 

The  hunting  amplitude  (Figure 6 .24)  i s  derived  from ( 6 .  5) when we set  

Comparing  equations (6.7) and ( 6 . 8 ) ,  we see  that  the  hunting  amplitude is 
equal  to  three  times  the  hunting loss: 

A = 30. (6.9) 

It  follows from Figure 6 . 2 4  that  the  critical  value of the  derivative of 

the  extremal  variable ( 6 .  6 )  i s  equal  to (t=- - T): 1 
2 

solving  equations (6.7) and ( 6 . 1  0) simultaneously, we obtain 

Hence, to reduce  the  hunting  losses  the  critical  value of the  derivative 
must be  lowered.  This  reduction,  however, is limited when false  reversals 
of the  system  are  considered. 

The  hunting  period  must  also  be  made as  small  as  possible,  since  this 
reduces  the  time  taken by the  system to arrive  at  the  extremum.  Too  small 
a  hunting  period,  however,  makes it difficult  to  distinguish  between  the  va- 
riation of the  input parameter (4) due  to  hunting,  and  increments  produced 
by random  processes  (e.  g.,  high-frequency  noise). 
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10. THE  EFFECT OF TIME LAG ON THE CHARACTERISTICS 
O F  EXTREMUM  CONTROL 

Until now, in  our  discussion of the  extremal  characteristics of adaptive 
control  systems, w e  assumed all the  component  elements  to  be  intertia- 
less. Since real systems  have  inertia,  this  effect  must  be  allowed  for. 

To  simplify  the  analysis we divide  the  adaptive  extremum  system  into 
several   parts  (Figure 6 . 2 5 ) .  In Figure 6 .  25 the  system is divided  into 
three  parts:  a  linear  input  unit with transfer function Gl(s), a  nonlinear  unit, 
and  a  linear  output  unit  with  transfer  function Gz(s) .  The  division is made so 
that all the  intertial  elements of the  system  are  lumped  in  the  input and 
output  units,  while  the  nonlinear  unit  remains  inertia-less. 

plifiers.  The  output  unit, a s  a  rule,  comprises  the  output  device,  the 
smoothing  filter,  etc.  It is also  assumed  that  the  extremum  hunting  unit, 
used here  as  the  feedback  loop, is nonlinear,  albeit  inertia-less.  The 
object of this  hunting  unit is to set up an alternating  signal of constant  am- 
plitude (&) : 

The  input  unit  generally  actuates  the  control  element and the  input  am- 

u,=+k(when q is to  be  increased): 
uI 5 "k (when 9 is to be  lowered): I 

A constraint  imposed on the  transfer  functions of the  linear  elements, 
GI (s) and Gz(s), i s  that  the  time  lag  introduced by these  functions  must  be 
small  in  comparison with the  hunting  period of the  system  in  the  inertia- 
less  case.  Otherwise  the  normal  operation of the  system  is  disturbed. 

( 6 .  1 1 )  

Linear  input Nonlinear  inertia- Linear output 1 output 
element less element  element 

6ys) Q=-krQ2) Gov 

FIGURE 6. 25. Block diagram of an adaptive  extremum  system 

Since  most  real  input and output  units of such  systems  can  be  described 
by linear  differential  equations, w e  shall  confine  the  following  discussion 
to  this  class only. 

Let  us first consider  a  particular  case when the  lag is produced  at  the 
output  only.  In other  words, we take -1. The  time  dependence of the 
input (4) and  the  extremal (q) variables is shown  in  Figure 6 . 2 4 .  Since  in 
our   case all the  functions  remain  the  same, w e  simply  reproduce  the  pre- 
vious  graph  in  Figure 6 . 2 6 .  Here,  however, q is not  the  output  variable 
of the  system. When passing  through  the  output  element  the  signal q is 
smoothed  and  acquires  a  phase  shift.  The  output  signal of the  system  there- 
fore  has the form u*=q(t), shown  graphically  in  Figure 6 . 2 6 .  
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FlGURE 6. 26. Characteristics of an extremum  system with 
the  time  lag restricted to the  output. 

Hence,  a  time  lag  at  the  system  output  causes  the  minimum of the  input 
parameter (ut) of the  system (point &) to lag  behind  the  true  time of trans- 
mission of the  minimum  value of the  extremal  variable (point A,). This 
introduces  an  error  in  the  determination of the  reversal  point. To eliminate 
this  error,  a  phase  advance  element  must  be  provided  at  the  system  output. 

We shall now consider  a  more  general  case, when time  lags  arise both 
at  the  input  and  at the  output. 

FIGURE 6. 27. Characteristics of an extremum  system 
with time lags  arising at the input and the  output. 
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In this case  the  input signal UI (Figure 6. 27) is affected  by  the  reversal 
signal  like 4 in  the  intertia-less  case  (Figure  6.24).  Thesignal  ulacquires  a 
phase  shift upon passing  through  the  input  unit  and its curve is somewhat 
smoothened [ q = F ( t ) ] .  The  critical  value of the  extremal  variable [ q - f ( f ) ]  
is therefore  somewhat  reduced  and  varies  as  shown  in  Figure  6.27.  The 
output  function ut, a s  in  the  case  where  the  time  lag  was  restricted  to  the 
output (Fipre  6.26),   shifts   relative  to  the q=f ( f )  curve  and is smoother 
than  this  extremal  curve. 

(Ts)units of the  system is in  each  case  approximately  equal  to  the  time 
constant of the  respective  units. 

Calculations  show  that  the  time  lag  introduced  bythe  input (TI) and  the  output 

11. THE DYNAMICS O F  EXTREMUM HUNTING I N  
ADAPTIVE  CONTROL  SYSTEMS 

Let  us  consider  the  dynamics of extremum hunting  in  an  adaptive  control 
system  as   i t   s tar ts   f rom  the  zero point  and  tunes  itself  to  the  extremum 
of the  controlled  variable. 

Suppose  that  the  input  linear  unit  (Figure 6 .25 )  i s  an  integrator,  i .   e.,  
signal 9 steadily  increases when signal UI is positive  (see(6.  11)). and de- 
creases  when UI i s  negative.  For  the  input  unit we have,  therefore,  from 
(6.4) 

(6. 12) 

where k is a constant. 
The  output  linear  unit of the  system  is   described,  as we have  already 

observed, by  a  linear  differential  equation.  Its  transfer  function  therefore 
has  the  form 

(6 .  1 3 )  

where Tz = the  time  constant of the  output  unit; 
kt = the  gain of this  unit. 

Hence,  the  ratio  between  the  Laplace  transforms of the  signals  at  the 
output  and  the  input of the  output  unit i s  equal  to 

where H (s) is the  Laplace  transform of q ( f ) .  
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We rewrite  this  equation  in  a  somewhat  different  form: 

The  inverse  function of this  equation is 

(6.14) 

W e  further  assume  that  the  system is reversed by the  extremum  hunting 
unit  when  the e r r o r  of the  system  output  signal ~2 equals 

where uzmu = the  signal  extremum  at  system  output; 
buz = the   prescr ibed  error  of output  voltage  relative  to  the  ex- 

t remum. 
Solving  equations ( 6 .  12) and (6 .  14) simultaneously, we  obtain 

(6. 16) 

It  follows  from  this  equation  that  the  maximum  signal (Ua)  is attained  at 
the output  when 

(6.17) 

If now the  extrema1  parameter is appropriately  scaled  (setting qs =kaq), 
the  signal usis maximized when 

uz-qsr  (6.17a) 

i. e . ,   a t  the  intersection  points of the  curves UZ=(p(q)  and qs =f(Q).  
Proceeding  from  these  considerations, we shall now analyze  the  dyna- 

mics  of extremum  hunting  in  this  system. 
Let  the  system  be  at  the  origin  (Figure  6.28,  point a ) .  When q is in- 

creasing,  the  following  inequality  applies  near  point a owing  to  the  time  lag 
in  the  output  unit: 

9s >k. (6.18) 

i .   e . ,   curve U2=p(q) extends  below  curve =f (q) .  

of point a 
Since q increases,  w e  have  from  equations (6.  16) and (6. 18) in  the  vicinity 

This  inequality wi l l  pers is t  till point b is reached,  where  the  curves m-e(q) 

I 
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and qr - f (q) intersect.  Therefore,  from  (6.17a),  at  point 6 

Passing  through  the  maximum  at  point b, & starts  decreasing.  As soon 
a s  the  difference &r -e becomes  equal  to Aua (see (6.15)).  the  system is 

reversed (point e). The  input  signal UI changes its sign  and  from  (6.11) 

(ud"-k 
and q starts decreasing. 

Therefore (Uz>qs), seeing  that  the  right-hand  side  in (6 .16)  is negative 
( u ~ = = - k ) ,  we obtain 

Beyond  point c the uz=-tp(g) curve first extends  above the qs=f(4) curve. 

i. e.,   the  slope of the uz-tp(9) curve  is  positive. 

a  positive  slope, & also  decreases.  At a  certain  point (d), the  curves 
up=q(9) and q s = f ( 9 )  w i l l  therefore  meet.  Since  at  point d, ~ z = q ~ = & ~ q ,  the 
derivative  (6.16) is equal  at  this  point  to 

Since beyond point c the  variable 9 decreases and  the  function uz"f(9) has 

Beyond  point d,  the  signal uz is lower  than qs. Therefore,  according  to 
(6.16),  the  curve u2--cp(9) has  again  a  negative  slope (ul-"R): 

At point e this  derivative  vanishes  again. Beyond point e the  voltage ua 
again  decreases,  since 9 is  st i l l   decreasing and the  derivative (u2>qs) is 
positive: 

At  point f the  difference us, -ut becomes  equal  to Aut and  the  system 

is again  reversed, so that q increases.  This  pattern w i l l  pe r s i s t  until  the 
system  has  approached  the  extremum and s t a r t s  hunting  about  the  extremum 

The  curve Uz-(p(g) describes  the  steady  hunting  mode  called  the  1 i m i  t 
point. 

h u n t i n g   c y c l e  (Figure 6.29) .  A characterist ic  feature of the limit 
cycle  distinguishing it f rom the dynamic  extremum-hunting  cycle  (Figure 
6.28) is that  any  point of the  cycle (e. g . ,  point A in  Figure  6.29)  repeats 
itself when  two  hunting  periods  have  been  completed  (for  point A this  indi- 
cates  motion from A to fl and  back). 
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F I G U R E  0 28. Tltc dynamics of ex t remum hunring. 

The  system  operates  in  the  limit  cycle  as  long  as  the  extremum  does 
not  drift. When this  point  drifts,  the  system  tunes  intself to the new ex- 
tremum and  a new limit  cycle is established. 

(Figure 6 . 2 8 )  and of the  limit  cycle  (Figure 6 . 2 9 ) .  To  simplify  the  dis- 
cussion we shall  assume  a  parabolic  extremal  characteristic q=f(q) .  A 
method similar  to  the  following  can  be  used  to  trace  the  extremum  hunting 
of a  system with any  other  extremal  characteristic. 

From  Figure 6 . 2 8  it  can  be  seen  that  the  dynamic  hunting  curve of an 
adaptive  system U2--cp(q)  i s  in  fact  a  succession of  hunting  halfcycles.  Over 
a  positive  halfcycle. q increases.  The  positive  halfcycle is then  succeeded 
by a  negative  halfcycle  and q decreases.  Completing  several  alternating 
halfcycles  the  system  tunes  to  the  extremum and settles  in  a  limit  hunting 

Let us now consider  the  mathematics of the  dynamic  extremum  hunting 
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cycle  (Figure 6 .29) .  To describe  the  behavior of the  system, it is sufficient 
to  determine  the  equations of the system  for a positive  and a negative  half- 
cycle. 

Le t  us first consider a positive  halfcycle  originating  at  an  arbitrary 

Since  over a positive  halfcycle (see (6.11))  the input signal  u,(Figure 
point (u1. 40). 

6.25) is + k ,  then,  inserting q from (6.3) into ( 6 .  16), we obtain 

or 

(6.19) 

Solving  this  equation, we derive  the  relationship  required. 
We have  assumed  nonzero  initial  conditions ( useand 40) in  this  equation 

(halfcycle).  Therefore,  to  reduce  the  system  to  one with zero  initial  con- 
ditions, we substitute  the  variables 

Then dt -duz ,   dr -dq ,  and therefore 

%=e 
dq dr ' 

(6.20) 

(6.20a) 

Inserting m, q from (6 .20)  and - from  (6.20a)  into ( 6 .  19), we obtain sol, 
dq 

& 1  - dr +-z=- -  
kT,  kTI ( +klk&). (6.21) 

This  expression  differs  from ( 6 .  19) in that  it  has  zero  initial  conditions. 
Indeed, it  follows  from ( 6 . 2 0 )  that when 4-40. the  variable ?PO. On the 
other  hand,  for 4-90. the  signal U2-Ut8. W e  therefore  have  from  (6.20), 
t= 0. 

Since  (6.21)  has  zero  initial  conditions, we Laplace-transform  the 
variables z and T and write 

o r  
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Rewriting  the  right-hand  side of this  equation a s  a  sum of partial 
fractions, we obtain 

2kIS 2k,h(go"RTJ %+klq!d-29&G+2q)  + Z(s) - - " E Jp 

+ 
- 

C 

%+wi(4-2qoRG+=T) 
1 

s+ q 
Using  the  Laplace-transform  tables, we find the  inverse  function 

( 6 . 2 2 )  

This  is  the  equation of a  positive  halfcycle of the  system, when the  pa- 
rameter  9 increases.  To  obtain  the  equation of a  negative  halfcycle, it suf- 
fices  to  change  the  sign of the  coefficient k in  (6.19),  and  consequently  in 
(6.22),  since  according to (6 .  l l ) ,  uI==-k over  the  negative  halfcycle. 

Equation ( 6 .  22) for a  negative  halfcycle  can  therefore  be  written  as 

(6.23) 

The  entire  curve  characterizing  the  dynamics of extremum  tuning  is 

The  origin is translated  to  the  extremum  (Figure  6.23). When the  system 
plotted a s  follows, 

is started,  the  parameters U% and q o  are  therefore not zero,  as  in  Figure 

6.28, but rather 4, and qo. (Figure  6.30).  Inserting US, =I& and 4014. i n  

(6 .22 ) ,  we obtain  the  equation  for  the  first  positive  halfcycle of system 
motion: 

Ua= -klk2(q'-2kTfl+2k'Q+ 

"a - 
+ [ u t , + k l k ~ ( g : - 2 q , k T 1 + 2 ~ T ~ ] e  (6.24) 

We plot  this  curve  in  Figure  6.30.  The  signal first increases, but a t  
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point b it is a r res ted  and s tar ts   to   decrease.  When  &equals uzC, defined as 

the  system is reversed.  Point c is therefore  the  origin of the first negative 
halfcycle of hunting. 

FIGURE 6. 30. Characteristic of the  system  with  the  origin  trans- 
lated  to  the  extremum. 

The  coordinates of point c are determined  as  follows.  Point b is the 
intersection  point of curves  q s = f ( q )  and uz=rp(q) (here upb=qI6). Therefore, 

equating  the  right-hand  side of (6.24) with the  expression q s  = "k1k2q2 (see 
( 6 . 3 )  and footnote  on p. 209) for q = q b r  w e  obtain  the  following  equation: 

This  equation  can  be  solved  for 9,.  Given q b ,  we can  find  from  (6.24) 
the  second  coordinate of point b ,  uzb. Now, since Au2 is known, upc can  be 

determined  from  (6.25).  Given he, w e  can  obtain qr from  (6.24).  Insert- 

ing  the  initial  values q o = q c  and US. =ulC into  (6.23), w e  obtain  the  equation 

of the  first  negative  halfcycle. 

of the  system  to  the  extremum, is plotted. 
Repeating  this  procedure,  the  entire  dynamic  curve  describing  the  tuning 

E x a  m  p 1 e .  An external  characteristic of a system is 
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Moreover, &-I,   &¶==I,  7'3t-2 sec, Aul=0.!25v. 
Inserting  these  parameters  in  (6.24)  gives  the  equation of the  f irst  

positive  halfcycle: 

u3- - qZ+4q-8+%""- (6.27) 

To determine  the  coordinate qb, the  parameters  are  inserted  in  (6.26), 
giving 

qb=2"5 e 
*b-8.s 

Solving  this  equation (by trial and er ror )   for  Q,, we find 

qs=1.5v. 

Inserting  in (6.27). the  voltage  at  point b i s  

urb= -224 v. 

W e  further  determine  the  coordinates of point c. Inserting u2, and Aul in 

equation ( 6 . 2  5) w e  find 

U2 .p b, -A&= - 2.24 - 0.25 = - 2.49 V. 

F rom equation (6.27),  where u%= -2.49v, we obtain 

qc=P.llv. 

Point c with  the  coordinates qc=2.14v, ~*=-2.49v is the  point of origin of 
the first negative  halfcycle.  Inserting  the  various  parameters  into  (6.23) 
and  seeing  that qo-q,=2.14v and u2,=~~--2.4%, we obtain  the  equation of 

the first negative  halfcycle: 

u2= -q 1-4q- 8+ 18.65 e*m. 

We  now can  find  the end  point of this  negative  halfcycle.  This  point is 
obviously  the  point of origin of the  second  positive  halfcycle,  etc.  Repeating 
this procedure,  the  entire  dynamic  curve of extremum  tuning is plotted. 

Equations  (6. 22) and (6. 23) apply to  any  halfcycle of system  motion,  in- 
cluding  the  limit  halfcycles. 

A positive  halfcycle  coincides with the  positive  limit  halfcycle i f  it 
passes  through  points A, B ,  and c (Figure  6.31). Note  that  points A and C 
have  equal  ordinates ( ~ 3 ~ - = U 1 ~ )  and a r e  equally  removed  from  the  ordinate 

axis (qA= -qc). Point B is the  intersection  point of curves qs - f (q )  and 

uZ=q(q). These  conditions  enable u s  to  determine  the  equations of the  limit 
halfcycles. 

A .  Therefore,  inserting  the  initial  conditions u% =UsA, qO-=qA in (6.22),  the 
The  point of origin of the  positive  limit  halfcycle  (Figure  6.31)  is point 
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:i 
characterist ic of the positive  limit  halfcycle is 

(6.28) 

8 
8 

FlGURE 6. 31. Parameters of the  limit cycle. 

Two  unknown parameters  enter  this  equation,  namely  the  coordinates of 
point A (usA and qA). W e  thus  require  additional  conditions  defining  these 

parameters.  We have  previouslyobserved  that  the  curve of the  positive  lim- 
it halfcycle  passes  through  point c. Therefore,  inserting  in (6.28) ~ = Q c .  
we obtain 

(6.29) 

therefore,  applying (6.30). w e  obtain 

(6.31) 
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Inserting &, from  (6.30) and qB from ( 6 . 3 1 )  w e  obtain 

We have  previously  observed  that a limit  halfcycle  differs  irom  other 
halfcycles  in  that  the  coordinates of i t s  two  end points ( A  and C) are   re la ted 
by the  equations 

(6.33) 

(6.35) 

The  solution of these  simultaneous  equations  gives  the  coordinates of 
C(qc and uoc). Now, from (6.33) we find the  coordinates of point A .  Applying 
(6.28), w e  can now plot  the  positive  limit  halfcycle. If in (6.28) we change 
the  sign of k and substitute new initial  conditions  (qcand uZc)  for qA and uU, 
w e  derive  the  characterist ic of the  negative  limit  halfcycle: 

(6.36) 
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0 
E x a m p l e  . Determine  the  characteristic of the  limit  halfcycles  for  the 

parameters of the  previous  example: &=l,kl=l ,  k2=l, T'2=2sec,Au2=0,25v. 
Inserting  these  parameters in equations  (6.34) and (6.35), we obtain 

Solving by t r ia l  and er ror ,  we find 

From  (6.33)  the  coordinates  of point A a r e  

qA= - 1.47~; -0.77~. 

Inserting  the  parameters k ,  kl, &2, and Tz, and the  initial  conditions 
4~ and UpA into  (6.28),  the  characteristic of  the  positive  limit  halfcycle is 

determined: 
u2= "4 2+4q-8+ 15.27e-4. 

Similarly,  inserting  these  data  into  (6.26), we find the  characteristic of the 
negative  limit  halfcycle: 

u2= -4  2- 4q - 8 + 15.27eOSqa4* 

Let  us  further  consider  the  time  variation of the output  voltage  (Figure 
6.25) when the  system  operates in  the limit hunting cycles. We shall 
assume,  as  before,  that  the  rate of change of the  variable q remains 
constant  (in  magnitude).  Then, for the  limit hunting cycle  (Figure  6.31) q 
will follow the  graph shown i n  Figure  6.32.  According  to  this  graph,  the 
time  dependence of q during  the first hunting  period  (the  positive  halfcycle) 
i s  given by 

4'9" +kt ;  ( T , t > O ) ,  (6.38) 

where & = t g a  

we find 
Inserting  this  expression  for q into  (6.28)  for  the  positive  limit  halfcycles 

Uz-  -kIRZ[(q" +RI)'"kT2(q, + k t )  + 2 q +  

+[hA + R I R ~ ( ~ : - - ~ ~ ~ T P + ~ P ~ J ~ - ~  

t 

or after  simple  manipulations 

(6.39) 
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FIGURE ti. 32. 7'11e clmacrerisric of q .  

The  time  variation of the  extrema1  variable q can  be  derived by inserting 
q from  (6.38)  into  (6.3).   This  gives 

q=-kl(q,+Rt)'. (6.40) 

It  was shown  in  section 6 - 9  that  the  hunting loss D i s  defined as  the 
average of the  extrema1  variable  over a hunting  period: 

I 

D- ;/ qdt. (6.41) 

We f i r s t  find  the  hunting  period ?'. From  F igures  6 . 3 1  and  6.32  it  can  be 
seen  that  the  hunting  period of a system is equal  to  the  time  required  to 
move  from  point A to  point c (or back).  Therefore,  setting q=qc in  (6.38) 
we find 

whence 

1 x ( q C - q A ) .  

Inserting qc f rom ( 6 .  33), we find the  hunting  period: 

7"- - k' 
2% 

(6.42) 

Inserting  from  (6.40)  and T from  (6.42)  into  (6.41), w e  obtain 
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whence,  integrating, w e  find the  hunting  loss: 

1 D"- 3 krq:. 

In the  previous  example,  the  hunting  loss  was 

(6.43) 

I 
D= - 3 - 1 * 1.4f-0.72~. 

12. STABILITY O F  ADAPTIVE  CONTROL  SYSTEMS 

We have  previously  assumed  a  restriction to  the  effect  that  the  response 
time of the  system  was  much  greater  than  the  drift of the  extremum  caused 
by the  variation of the  characterigtic  curve q=f(q) in  time. 

When a  system  contains no reactive  components  it is stable  at all times. 
However, if the system  contains  inertial  elements.  its  stability  can  be 
disturbed  and  it  may  fail  to  tune  to  the  extremum. 

Let u s  consider  this  problem  in  application  to  a  step  system, which 
measure  at   intervals of At seconds  the  extremal  variable q and reverses  
when 

lI4li-l 

To  simplify  the  discussion, we shall  assume  that  the  reversal  signal is 
produced  when  the  instantaneous  values  of q , measured  each & see ,   a r e  
compared. In reality,  the  comparison  is  made  between  values  averaged  over 
the Af intervals. We sha l l  moreover  assume  that  the  extremum  hunting 
device  has no dead  zone. 

Therefore,  unlike  Figure 6 . 1 8  (the  upper  graph),  the  left-hand  side of 
Figure 6.33 shows a continuous  curve q==f(q). We shall  make  a  further 
assumption  that  the  system in question  has no linear  output  unit,  i. e . ,  no 
time  lag  arises  at  the  output. 

W e  shall  start  the  analysis  at  the  origin  (Figure 6 . 3 3 ) .  where q-0. 
A t  the  start,  the  input  voltage UI (Figure 6.25) i s  +k, and q correspondingly 
increases.  At points 1 and 2 the  inequality q,<q,-~ is not satisfied.  Finally 
at  point 3 the  inequality q,<qrl is satisfied and the  voltage Ul i s  consequently 
reversed.  Since  the  system  has  a  linear  input  unit  introducing  a  time  lag, 
the  following  two  cases  are  possible. 

a)  Input time  lag is very  small  

In this  case  (Figure 6.33) q w i l l  increase  slightly beyond  point 3 and  then 
start  rapidly  decreasing.  Following  the  decrease of q, the  extremal  variable 
q increases.  Therefore, when the  next  measurement is taken  (point 4 ) .  it 
is found that qt>q-, and  the  system wi l l  move on toward  the  extremum. 
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H'ence, in  spite of the  time  lag,  the  system w i l l  hunt normally  about  the 
extremum. 

b) Input time  lag is relatively  large 

If the  t ime  lag is large, q may  persist   in  i ts  upward trend owing to  the 
inertia of the  linear  input  unit  (Figure 6.25). even  after  the  reversal of K ,  

a t  point 3. 
\. . 

: i t ! '  

FIGURE 6.33. Characteristics of stabIe and unstable  systems. 

Therefore, when the next measurement is taken  (point 4), it w i l l  be found 
that q,<qpl and the  system w i l l  again  be  reversed, but this  time i n  the 
wrong  direction: 9 w i l l  increase  instead of decreasing.  The  system wi l l  
therefore  recede  from  the  extremum  in  an  oscillatory  manner ( the  dashed 
curve  in  Figure 6.33) and the  stability of the  system wil l  be  disturbed. 

If there   are   t ime  lags   a t  both the  input and the output of the  system,  its 
stability is best  analyzed  from  the  curve ur-cp(q). 

In a  stable  system  (Figure 6.34), after  reversal  (point 3), q slightly 
increases  and  then starts  decreasing (point  4a). In an  unstable  system 
(dashed  curve) 4 steadily  increases  in  oscillatory  motion beyond point 3. 

An analysis of the  curve u2=-q(q) thus  enables  us  to  determine  the 
stability of an  adaptive  control  system and to  analyze  the  dynamics of i t s  
tuning  to  the  extremum. 

13. HUNTING THE MINIMUM VALUE OF THE EXTREMAL  VARIABLE 

Hitherto  only  system  where  the  controlled  variable had a  maximum, 
were considered. All the  preceding  can  easily be  applied  to  systems  where 
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the  minimum of the  controlled  variable is required.  For  example,  Figure 
6.35 shows  the  dynamic  characteristic of a system  hunting  the  minimum 
point of the  extremal  curve. 

t 

FIGURE G .  34. Dynamic  characteristics of the  system. 

The  function y " F ( g )  with  a minimum  (Figure 6 . 3 6 )  can  easily be  reduced 
to a curve q = f ( g )  with  a maximum.  This  transformation  is  attained by 
subtraction 

q - U k - Y .  ( 6 . 4 4 )  

where y = the  function with the  minimum; 
q = the function  with the  maximum; 
U, = constant  voltage. 

A regulator  designed to hunt the  maximum of a controlled  variable (q) 
can  thus  be  used to establish  the  minimum of a function ( y ) .  

14. OPTIMIZATION OF FUNCTIONS WITH SEVERAL 
INDEPENDENT VARIABLES 

In most  common  cases  the  extremal  parameter (q) is a function of one 

There  are  cases,  however, when the  extremal  parameter is a function 

We shall  consider  some  common  extremization  techniques  for  these 

variable (4) fed  into  the  controlled  system. 

of one  or  more  independent  variables ( x ,  y, z ,  . . . ). 
.cases. 
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FIGURE 6.35. Dynamics of a system  hunting  its  minimum 

a)  Gauss-Seidel  method 
(successive  variation of parameters)  

This method calls  for  successive  determination of partial  extrema. In 
other  words,  an  automatic-control  system is first tuned to  the  extremum of 
the  function 

When the  system  has  adjusted  itself to this  extremum,  it  starts  hunting 
for  the  second  partial  extremum: 

Following  this,  the  functions 

are  extremized. 

Then  the  system  starts  hunting  again  for  the  first  extremum: 
The  procedure  is  iterated  until  all  the  partial  extrema  are  established. 

The  system  thus  operates  in a cycle which involves  the  successive 
variation of the  input  parameters. 
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FlGURE 6. 36. Transformation of a  function with a 
minimum 10 a  function with a maximum. 

When the  input of the  system  consists of n independent  variables,  the 
operation of the  system  is  inv-estigated  in  n-dimensional  space.  To  simplify 
the  problem, a system with  only two independent  variables (x  and y)  w i l l  
be considered. In this  case  the  process  can  be  represented by plane  curves. 

The input variables x and y are  laid off on the  horizontal and vertical 
aixs  (Figure 6 . 3 7 ) .  The  oripn  is   translated,   as  before  (e.g. ,   Figure 6.23), 
to  the  extremum. 

parameter;  ql, qz, qs, .. . , q r  ... Obviously, 
In this  plane we trace  the  loci of constant  values  for  each  extrema1 

We further  assume  that  at  the  start  the  system w a s  located  at  point A .  
The  system  approaches  the  extremum  (the  origin)  as  follows. 

First the  variable x increases, so that  for y = y ~ =  const,  the  function 
q=fl(x) is   extremized. A t  this point ( B ) ,  the  system  switches  over to 
parameter y, which is subsequently  varied. At point c,  with x-x~=const ,  
the  function q=f2(y) is extremized.  The  system  again  hunts  for  the 
extremum of the  function q = f l ( x ) ,  this  time  assuming a new value y=y,= 
=const,   closerto  theoriginthan y ~ ,  etc.  The  process is iterated  until  the 
system  reaches  the  origin. 

originally  designed  for  extremizing  functions of one variable. We see  f rom 
Figure 6.37,  however,  that  the  system  approaches  the  extremum by a path 
which is by no means  the  shortest. 

This  method is convenient as it  can be carr ied out  with systems 
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FIGURE ti. 37. Dynamics of extremum tuning with successive  variation of parameters. 

b)  The  gradient  method 

This  method of extremum  tuning  involves  the  simultaneous  variation of 
all the  independent parameters ( x, y, 2.. ) .  The  rate of change of each of 
these  parameters  (all of which change  continuously) is  proportional to  the 
partial  derivative of the  extremal  variable (q)  with respect  to  the  parameter 
concerned: 

- dk h.d .Y-k";-=k a?& _... drl 
d t = k ~ * d t -  ay dt (6.45) 

If the  parameters x ,  y, 2 . .  . change  discretely,  the  increment of each 
parameter is determined by the  expressions 

( 6 . 4 6 )  

The  dynamics of extremum hunting for the  two-variable  case  (xand y) 
is shown in Figure 6 .  38.  In this  figure  it  can  be  seen  that  the  curve 
describing  the  motion of the  system is at all times  normal  to  the  lines of 
equal  values of the  extremal  variable (q). 
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When the  gradient  method is employed,  the  extremalparameter  increases 
until  the  system  reaches  the  extremum.  The  advantage of this method is 
the  relatively  short  time  required  to  maximize q, and the  small  hunting 
amplitude. 

c)  The  brachistochrone  method 
(method of fastest  descent) 

When situated  at  point A, the  system  establishes  the  normal  to  the 
surface = f ( x ,  y, L., .) joining  points with a constant  value of q and passing 
through  point A .  The  system  then  starts  moving  along  this  normal  until  the 
derivative of the  function q = f ( X ,  y, Z ...) in  this  direction  vanishes.  After 
that,  the  normal is again  established and the  system  resumes  its  motion, 
etc. 

a 

FIGURE 6.38. Dynamics of tuning to  the  extremum using the  gradient 
method. 

I 

The  path  of  the  system  in  the  case of two variables ( x  and y )  i s  shown 
in  Figure 6 . 3 9 .  The  equation of the  normal  erected to the  curve f i (x ,  y) at 
point-A is 

( 6 . 4 7 )  

where xk yA = the  coordinates  of  point A;  
f l ( X .  y) = the loci of constant  values of q passing  through point A.  
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FIGURE 6.39 .  Dynamics of extremum  tuning w i t h  the  brachistochrone 
method. 

When the  normal  direction  has  been  fixed,  the  system  starts  moving 
along  this  normal. At point B, where  the  extremal  parameter (q) i s  
maximized,  the  system  establishes  the  normal  to  the  loci of constant of 
passing  through  this new point.  This  procedure is repeated  until  the  system 
reaches  the  origin. 

The  advantage of the  brachistochrone method i s  the relatively  short  time 
required  to  approach  the  extremum. 
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Chapter VII 

LEARNING IN AUTOMATIC-CONTROL SYSTEMS 

1. THE PROBLEM OF LEARNING 

The  application of learning  in  automatic-control  systems is the  climax 
in  the  development of engineering  cybernetics. 

Learning  systems,  unlike  adaptive  systems,  are  at first incapable of 
performing  any  control  functions  whatsoever.  They  collect  information  on 
the  controlled  object and its  behavior.  They  as if observe  the  process of 
manual  control, o r  control by some  other  automatic  device.  Only  after 
these  systems  "learn" how to  control,  can  they  take  over.  The  process of 
learning  does not stop  here. While carrying  out  active  control,  the  systems 
still "investigate"  the  controlled  object  and  modify  the  control  specifications 
so  that  the  control  characteristics  are  improved. 

in  spite of considerable  variation of external  conditions is called 
h o m e o s t  a s  i s * . Ashby  designed an apparatus  demonstrating how 
learning  introduced  changes  in  the  reaction of the  apparatus  to  varying 
external  conditions.  This  apparatus  was  called  a  h o m  e o s t  a t .  

A container  with  electrolyte  was  placed  under  each  magnet.  Electrodes 
were  provided  along  the  edge of each  container,  and  a  rod  immersed  in  the 
liquid  was  attached  to  each  magnet.  Each  magnet,  together  with  the 
container,  thus  comprised a potentiometer which varied  the  voltage 
depending on the  angle of inclination of the  hinged  electromagnet. 

The  ability of living  organisms  to  maintain  certain  characteristics 

Ashby's  homeostat  consisted of four  electromagnets  suspended on hinges. 

Amplifiers  were  connected  to  each 
potentiometer  giving  four  identical  units 
(Figure 7. 1). These  units  were so  connected 
that  the output  voltage of each  was  fed  to 
the  other  three  units.  The  input of each 
unit  thus  received  voltage  from  all  the 
other  units. In  addition a feedback  loop  fed 
the output  voltage of each  unit  to its own 
input. 

proportional  to  the  output  voltage of all four 
units. 

Switches  were  provided  at  the  inputs of 

The  torque  in  each  unit'was  thus 

each unit to change  (discretely)  the  polarity 
FIGURE 7.1. Block diagram of Ashby's and  gain of each  voltage.  There  was  a  total 
homeortar. of 390, 625 different  combinations of the 

blror6oraors -the  state of stable  equilibrium. 
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parameters.  The  number of variables  was  eight (the  angle of inclination 
of the  four  magnets  and  the  position of the  four  switches). 

The  object of this apparatus,  according  to Ashby, was  to  produce 
"ultrastability". A stable state existed  when all the  four  suspended  magnets 
were  in  the  vertical  (zero)  position.  This state had to be  maintained  under 
very  different  external  conqitions:  coils  open or  short-circuited,   polarity 
of the  magnets  reversed,  the  resistances  introduced  into  the  coil  circuits, 
etc. 

The  homeostat  was so built  that, when it was  disturbed by  an  external 
stimulus, e. g., a short-circuit  in  one of the  coils,  the  selector  switches 
stepped  over  all  the 390,625 positions  and  selected  those  positions  where 
the  voltages of all four  electromagnets  were  zero. 

homeostat,  since  this  device  only  selected  coil  polarities and  gain factors 
to  ensure  stability  under new, modified  conditions.  The  homeostat  returned 
to  the  initial  state (when the  initial  conditions  were  restored)  only  after 
random  searching  (processinghundreds of thousands of possible  combinations). 

Shannon's  so-called  "mouse" is very  famous.  This  "mouse" moved  in  a 
maze of previously unknown layout  and felt the  walls of the  maze  as it hit 
them.  After  many a t r ia l  and e r ro r ,  it emerged at the  correct end of the 
maze. In its first run through  the  maze,  the  "mouse" as i f  "learned"  the 
layout.  Therefore, when the  "mouse" ran again  through  the  maze, it traced 
the  correct  path without  hitting  the  walls. 

It must be kept  in  mind  that  the  process of remembering  and  forgetting 
in  living  organisms  and  in  computing  devices  follows  essentially  different 
patterns.  Computingdevices  "memorize"  information  almost  instantaneously 
and  "store" it until  a new command  makes  them  forget.  Animals, on the 
other hand, learn  slowly and forget  slowly. 

those  used  in  computor  engineering. 

and  called  by its creator  "Cora1'. 'tors" was  built as a small  trolley 
which  shid"  (rolled  aside)  when  pushed,  but at first did  not react to sound. 
If the  push  was  accompanied  several  times  by  sound,  "Coral'  started 
reacting  (rolled  aside)  also  to  this new signal.  However, if "Cora"  was 
pushed  several  times without the  accompaniment of sound, it "forgot"  the 
meaning of sound  and  again  reacted  only  to  the  mechanical  stimulus.  "Cora" 
thus  approximately  imitated  the  development of a conditioned  reflex. We 
shall now consider  this  problem  in  more  detail. 

Strictly  speaking,  the  term  "learningr'  does not  apply to  Ashby's 

A learning  system  must  therefore  be  designed  on  other  principles  than 

Quite  interesting in this  respect  was  the  device  developed by Walter 

2. IMITATION OF THE LEARNING  PROCESS 

Imitating  the  process of development of conditioned  reflexes  in  automatic- 
control  systems is of prime  importance  for  the  design of learning  systems. 

Pavlov  showed  that if a bell  was  sounded a sufficient  number of t imes 
before  an  animal  received its food,  then, after  a  certain  period, the animal 
reacted  to  this sound as if it were food, i. e., when the  bell  rang,  saliva 
was  secreted. 

Consider  simulating  this  experiment by means of the  circuit  shown  in 
Figure 7.2.  
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FIGURE I. 2. Electrical  simulation of a  conditioned  reflex. 

In this  circuit when button A is pressed ("the bell  rings"),  the  "saliva" 
signal  does not  light,  since  in  this  case  only  contact  I is made  (the  battery 
is not charged). If now button B is pressed ("give  food"),  switch 111 is 
closed and the  signal  lamp  lights. 

the food is given).  In  this case, contacts  I and I1 are  made  simultaneously 
and  the  battery  receives  some  charge. Af t e r  repeated  pressing of the  two 
buttons  the  battery is sufficiently  charged, so that when only  button A (the 
bell) is pressed,  contact 111 also  makes, and the  "saliva"  signal  lights. 

However,  this  situation  will  not  persist  indefinitely. If now button A is 
pressed  several   t imes in succession,  the  battery  discharges.  After  that 
the  system will not react  to  signal A .  

conditioned  reflex  and is thus  considered a learning  element. A learning 
system  based on this  element  measures  the  probability of coincidence of 
events A and B .  If this  probability is high,  the  battery is gradually  charged. 
If the  probability is low, the  battery  does not charge  (or  even  discharge). 

Let  us  consider still another  system  (Figure 7. 3)  assembled of basic 
logic  elements. 

Voltage is periodically  applied  to  inputs ( A  and B )  of the  system (by 
analogy  with  the  pressing of buttons A and B in  Figure 7.2). The AND, 
gate  enables  counter CI to  count  the  number of simu'taneous  occurrences 
of signals A and B (the  analogy  in  Figure 7 .2  is the  charging of the  battery 
when the two  buttons are  pressed  simultaneously).  Counter Cs records  the 
number of times  signal A is not  accompanied  by  signal B (the  battery- 
discharging  analogy  in  Figure 7.2). 

Counter C, emits an output  signal after nl counts.  Similarly,  counter Ct 
produces an output  signal  after  receiving Q counts.  Each  counter is rese t  
to   zero when an  input signal is received  by  the  other  counter.  The  counter 
outputs are fed  into a trigger  circuit  made of four  gates (OR,, NOT,, OR,, 
NOT,). We see from  the  block  diagram  that C, sets point o to  1, and  counter 
Cr c lears  it to  zero. 

Let us now p res s  buttons A and B simultaneously  (the  bell  rings when 

The circuit shown  in  Figure 7 .2  simulates  the  development of a 
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FIGURE I. 3. Logic  element  system  simulating  a  conditioned  reflex. 

The  system  operates  as  follows. When signals A and E coincide,  the 
AND, gate  produces  an  output  signal,  the  counter cl keeping  record of these 
coincidence  signals. When the  accumulated  number is f l l ,  the  counter  feeds 
a signal  into  the  trigger  circuit  and  point a is set to 1. 

A t  first, if the  system  receives  signal A only,  the  output of the  system 
is 0. However,  after  point u is set   to  1, signal A alone  (like  signals A and 
E together)  produces  an output of 1 at c. 

If signal A is not  accompanied  by  signal E ,  the  gates NOT,, AND, are 
actuated, and clear  to  zero  counter CI. Simultaneously,  counter Cz s t a r t s  
counting  the  number of separate  occurrences of signal A ,  when  not 
accompanied  by  signal E .  If this  number is equal  to nz, counter cz emits 
an output  signal,  the  trigger  circuit is actuated,  and  point u is reset   to  0. 
A f t e r  this  signal, A alone wil l  not  produce  an  output  signal at c. 
The  system  in  Figure 7.3 thus  operates  analogously  to  the  circuit  in 
Figure 7.2. 

its  logical  operation  depending on the  probability of simultaneous 
occurrence of signals A and E .  Indeed, it follows  from  Figure 7.3 that 
when the  probability of coincidence of signals A and B is low, the  system 
performs  the  following  logical  proposition: 

If, a s  c2 counts,  an  input  signal is received by c1, counter c2 is cleared. 

Note that  the  system  in  Figure 7. 3, as in  the  previous  circuit,  changes 

C- B. 

If the  coincidence  probability is high, the  system  performs  a  different 
logical  proposition: 

C=A+B. 

The  circuits  in  Figures 7.2 and 7.3 are  in  fact  the  basic  elements  used 
in composite  learning  automatic-control  systems. 

Let us  consider a simple  example in the  application of the  system  in 
Figure 7.3. The  cutting  depth of a cylindrical  part  by  a  lathe is to  be 
automatically  regulated.  The  cutter  in  this  lathe  can  be  adjusted so that 
the part  in question is turned  to  the  required  diameter.  However,  as  the 
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f cutter  wears out, the  final  diameter of the  machined  parts  gradually 

I increases,  until  eventually  rejects  appear  whose  diameters  are  greater  than 
the  permissible  maximum.  To  avoid  this,  the  cutter  must  be  moved  toward 
the  center of the  machined  part so as to  compensate  for its wear. 

On the  other  hand,  the  cutter  meets  different  resistances  from  different 
parts  because  the  parts  have  not  been  cast  simultaneously, o r  have  acquired 
individual  corrosion  crusts,  etc.  In  addition,  the  backlash  and  play of the 
cutter  holder,  cause  the  diameter of the  finished  product  to  be a random 
variable.  The  increase of the  diameter of one  (k-th)  part  when  compared 
with  the  diameter of the  preceding  (k-1-th)  part  cannot  be  interpreted as 
a signal  for  cutter  adjustment,  since  the  diameter of the  next  (k+l-th)  part 
can  again  be  smaller  than  the  diameter of the  present  part.  Hence  the  cutter 
must be adjusted when the  probability  that  the  diameter  has  increased, 
because of cutter  wear, is sufficiently  high. 

in  Figure 7.4 for  the  automatic  control of the  lathe  cutter. 
Applying  the  principle of the  system  in  Figure 7.3. we se t  up the  circuit 

"Increased diameter" 
signal 

c, 
A 

"Normal diameter" 
signal 

FIGURE 7. 4. Logical  circuit for selector  control. 

Two signals  are  received at the  input of this  system:  signal A indicating 
a part is being  machined,  and  signal B indicating  that  the  diameter of the 
machined  part is greater  than a preassigned  value.  This  control  value is 
taken  smaller  than  the  permissible  maximum, so that a random  increase 
in diameter will not  cause  rejection. 

of the  machined  part is greater  than  the  preassigned  value.  Counter c1 keeps 
record of the  number of these  par ts  and  emits a signal when this  number, 
as in Figure 7.3, reaches nl. 

The AND, gate  produces  an  output  signal when the  diameter of the 
machined  part is not greater  than  the  preassigned  value.  This  signal  clears 
counter c1 to  zero. A signal at the  counter  output  thus  indicates that the 
probability of occurrence of parts  with increased  diameter  has  become 
sufficiently  high.  This  signal is used by a selector  to  rotate  the  cutter 
guide  screw,  adjustingthe  cutter  to  the  next  prescribed  position. 

In  'this  problem. it is naturally  assumed  that  the  distance  over  which 
the  cutter is displaced, when the  selector  moves  one  position, is sufficient 

The AND, gate  thus  produces an output signal whenever  the  diameter 
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to  make  the  diameter of the  machined  parts  smaller  than  the  prescribed 
value. 

Let us consider an example when the  investigated  signal is continuous. 
Take  two  batteries  (Figure 7.5), one of which is being  charged and the 

other  discharged.  Each  battery is switched from one  mode to the  other 
by  means of a selector. The battery  being  discharged  must be  switched 
over  to  charge when its  voltage  drops  to a prescribed  level, and the  other 
battery, which  until  then  has  been  charging,  must  be  switched  over to 
discharge. 

- - I 
I 
I 

m 

I 
I 

m 

- - 
- - - - - 

- 
FIGURE I. 5. Two-battery  control  circuit. 

It  should  be  observed  that  the  batteries  supply  various  consumers,  whose 
character is t ics  and operating  curves  are  generally unknown. Moreover, 
when an electrical  motor is started,  the  battery  voltage  briefly  drops.  The 
battery  voltage  (Figure 7.6) is therefore a random  function of time. 

i" 

FlGURE 7. 6. Battery  voltage. 
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Hence in this example  the  batteries  should  not be switched over 
immediately  when  the  voltage of the  discharging  battery  reaches  some 
minimum  value (as is usually  done  in  ordinary  error-regulating  systems). 

for  the  switching of batteries. 
Using  the  principle of Figure 7.2, the  circuit  in  Figure 7.7 was  designed 

2 TO selector 

FIGURE 7 .  7. Control  circuit for battery switching. 

b 

d 

1401 

FIGURE 7. 8. Logical  operation. 
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The  second  element  (Figure  7.8.b)  consistingof a Zener  diode KCt and 
a r e s i s to r  Rt as if lowers  the  maximum  voltage u, (that  which  exceeds uh ) 
to  the  abscissa a x i s  (voltage ub)* . 

The  input of the first amplifier  thus  consists of almost  rectangular 
impulses.  The  ratio of the  duration of these  impulses  to  the  overall  time 
of measurement  gives  the  probability  that  the  battery  voltage falls in the 
range ub,>ub>ub,. 

To  control  the  selector in Figure 7.5, this probability  need  not  be 
computed.  It  suffices  to  determine  the  point at which the  probability P 
attains a prescribed  value PI. We therefore  proceed as follows. 

consisting of a capacitor (C) and  two resis tors  (RJ and R,).  When an  output 
voltage is produced  by  this  element,  the  capacitor  charges,  and when there  
is no output  voltage, it discharges  (through  resistor R d ) .  The  probability 
PI can  therefore  be  characterized by  the  output  voltage U, of this  element. 

Hence,  clipping  the  lower  part of the  curve u,=f(t) by means of the 
element  shown  in  Figure 7.8, c,  we obtain  the  voltage u, representing  the 
probability  that  the  voltage of the  battery falls in  the  range &,, >u, >ub is 
greater  than  the  prescribed value PI. If now voltage u,is amplified and fed 
to  the  selector  coil,   the  battery is automatically  switched  over  to  the 
charging  regime, as required. 

A t  present we are  witnessing  the first stages  in  the  application of 
learning  systems  to  various  branches of the  national  economy.  The  existing 
automatic-control  systems  are  capable of imitating  only  the  simplest 
elements of the  learning  process  in  animals.  However,  the  vigorous 
development of cybernetics  shows  that  this  imitation is continually  improving 
from  year  to  year.   There is no doubt that in the  near  future  learning 
systems will  find  a  very wide range of applications. 

Voltage u b  is amplified  and  applied  to an element  (Figure 7 . 8 , ~ )  

* 

Because of the  comparatively  small  scope of this book we naturally 
could  not  cover  the  entire  range of problems  and  topics  advanced  by 
engineering  cybernetics. 

his  way  through  the book, has  acquired  some  interest  in  engineering 
cybernetics  and  learned how cybernetics  can  be  applied  to  the  solution of 
practical  problems,  then  the  author's  object  has  been  achieved.  For  further 
details  the  reader  should  refer  to  specialized  scientific  literature. 

This,  however,  was not the  aim of the book. If the  reader,  having  worked 

[This element acts as a discriminator. ] 
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